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Ancient number theory

One of the most important topics in analytic number theory is the distribution of prime
numbers. In ancient times, people knew that there were infinitely many prime numbers.
Let

π(x) =
∑

p⩽x

1.

Theorem (Euclid)

π(x) → ∞ as x → ∞.

Euclid constructed a prime number of the form p1p2 · · · pn + 1 and proved the above
theorem by contradiction.
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Chebyshev’s theorem

Due to the discrete distribution of individual prime numbers, mathematicians began to
focus on the distribution of prime counting function π(x).

In 1845, Bertrand conjectured the following statement, which was later proved by
Chebyshev in 1852.

Bertrand’s postulate / Chebyshev’s theorem (1852)

For any x > 1, there is at least one prime number between x and 2x . That is,

π(2x)− π(x) > 0.
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Prime Number Theorem

Chebyshev actually proved the following result.

0.92129
x

log x
⩽ π(x) ⩽ 1.10555

x

log x
as x → ∞,

where Gauss and Legendre previously conjectured that

π(x) ∼ x

log x
as x → ∞.

By Chebyshev’s result, one can easily show that

π(2x)− π(x) k x

log x
.

4 / 81



Riemann Hypothesis

In 1859, Riemann connected π(x) with the zeros of complex function ζ(s) and put
forward his famous hypothesis.

Riemann Hypothesis (RH)

All non–trivial zeros of ζ(s) lie on the straight line Re(s) = 1
2 .

As of 2025, RH is still unsolved.
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Prime Number Theorem

Using ideas introduced by Riemann, Hadamard and de la Vallée Poussin proved the
famous Prime Number Theorem independently in 1896.

Prime Number Theorem (PNT) (Hadamard, 1896; de la Vallée Poussin, 1896)

π(x) ∼ x

log x
as x → ∞.

By this theorem, it is easy to prove that

π(2x)− π(x) ∼ x

log x
.
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Primes in short intervals

Can we find primes in intervals shorter than x as x → ∞?

Hoheisel’s theorem (1930)

There exists some θ < 1 such that

π(x + xθ+ε)− π(x) ∼ xθ+ε

log x
.

Moreover, θ = 32999
33000 is acceptable.
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Primes in short intervals

Ingham’s theorem (1936)

If

ζ

(

1

2
+ it

)

j tc,

then

π(x + xθ+ε)− π(x) ∼ xθ+ε

log x
, θ =

1 + 4c

2 + 4c
.

Moreover, c = 1
6 yields

π(x + x
5
8
+ε)− π(x) ∼ x

5
8
+ε

log x
.
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Primes in short intervals, records I

• 32999
33000 = 0.9999, Hoheisel, 1930;

• 249
250 = 0.9960, Heilbronn, 1933;

• 3
4 = 0.7500, Chudakov, 1936;

• 5
8 = 0.6250, Ingham, 1936;

• 3
5 = 0.6000, Montgomery, 1971;

• 7
12 = 0.5833, Huxley, 1972; Ivić, 1979; Heath-Brown, 1988;

• 17
30 = 0.5667, Guth–Maynard, 2025.
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Zero-density approach

Let

Λ(n) =

{

log p, n = pk ,

0, otherwise.

Because
∑

n⩽x

Λ(n) =
∑

p⩽x

log p + O
(

x
1
2
+ε
)

,

we can study
∑

n⩽x Λ(n) instead of π(x). Note that we have

−ζ ′(s)

ζ(s)
=

∞
∑

n=1

Λ(n)

ns
.
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Zero-density approach

Perron’s formula

Let a(n) = O(1). We have

∑

n⩽x

a(n) =
1

2πi

∫ 1+ε+i∞

1+ε−i∞

∞
∑

n=1

a(n)

ns
x s

s
ds + Error.

By Perron’s formula we have
∞
∑

n=1

Λ(n) = − 1

2πi

∫ 1+ε+i∞

1+ε−i∞

∞
∑

n=1

ζ ′(s)

ζ(s)

x s

s
ds + Error.

By moving the line of integration, we can get the Explicit Formula

∑

n⩽x

Λ(n) = x −
∑

ρ=β+iγ
|γ|<T

xρ

ρ
+ O

(

x(log x)2

T

)

.
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Zero-density approach

Similarly, for the short interval problem we can also get the Explicit Formula

∑

x−xθ<n⩽x

Λ(n) = xθ −
∑

ρ=β+iγ
|γ|<T

xρ −
(

x − xθ
)ρ

ρ
+ O

(

x(log x)2

T

)

.

Let T = x1−θ(log x)3 and

N(σ,T ) = #{zeros of ζ(β + iγ) : β ⩾ σ, 0 < γ ⩽ T}.

Let

E (σ) =
∑

ρ=β+iγ
|γ|<T

σ⩽β<σ+(log x)−1

xρ −
(

x − xθ
)ρ

ρ
.

We want to show that E (σ) = o
(

xθ(log x)−1
)

.
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Zero-density approach

Note that
xρ −

(

x − xθ
)ρ

ρ
=

∫ x

x−xθ
uρ−1du j xθxRe(ρ)−1,

we have
E (σ) j xθxσ−1N(σ,T ).

Thus, by Vinogradov zero-free region and bounds of the types

N(σ,T ) j TA(1−σ)(logT )B or N(σ,T ) j TA(1−σ)+ε,

we only need

(1− σ)(A(1− θ)− 1) < 0 or θ > 1− 1

A
.

Huxley: A = 12
5 =⇒ θ > 7

12 . Guth–Maynard: A = 30
13 =⇒ θ > 17

30 .
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Primes in short intervals

One can get shorter intervals if we don’t require an asymptotic formula. Using sieve
methods, Iwaniec and Jutila got in 1979 that

Theorem (Iwaniec–Jutila, 1979)

π(x + x
13
23
+ε)− π(x) k x

13
23
+ε

log x
.
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Primes in short intervals, records II

• 13
23 = 0.5652, Iwaniec–Jutila, 1979;

• 5
9 = 0.5556, Iwaniec–Jutila, 1979;

• 11
20 = 0.5500, Heath-Brown–Iwaniec,
1979;

• 17
31 = 0.5484, Pintz, 1981; Iwaniec
(Unpublished);

• 23
42 = 0.5476, Iwaniec–Pintz, 1984;

• 1051
1920 = 0.5474, Mozzochi, 1986;

• 35
64 = 0.5469, Lou–Yao (Unpublished),
1985;

• 6
11 = 0.5455, Lou–Yao, 1992;

• 7
13 = 0.5385, Lou–Yao, 1992;

• 107
200 = 0.5350, Baker–Harman, 1996;

• 21
40 = 0.5250, Baker–Harman–Pintz,
2001;

• 13
25 = 0.5200, L. (preprint), 2025.

15 / 81



Primes in short intervals: New proofs

Without using too many deep results, Motohashi and Friedlander and Iwaniec gave
simplified proofs of the existence of primes in short intervals.

Theorem (Motohashi, 1983)

We have
π(x + x0.56)− π(x) k x0.56(log x)−1.

Theorem (Friedlander–Iwaniec, 2010)

We have
π(x + x0.58)− π(x) k x0.58(log x)−1.
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Primes in short intervals: New proofs

In 2019, Granville, Harper and Soundararajan gave a new proof of Hoheisel’s theorem
with an asymptotic formula.

Theorem (Granville–Harper–Soundararajan, 2019)

For some δ > 0, we have

π(x + x1−δ)− π(x) ∼ x1−δ(log x)−1.
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Primes in short intervals: New proofs

In 2024, Matomäki, Merikoski and Teräväinen gave a pure elementary proof of Hoheisel’s
theorem.

Theorem (Matomäki–Merikoski–Teräväinen, 2024)

We have
π(x + x

39
40 )− π(x) k x

39
40 (log x)−1.
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Sieve approach

Let

A = {a : x − xθ < a ⩽ x}, Ad = {a : ad ∈ A}, S (A, z) =
∑

a∈A
(a,P(z))=1

1.

Then by a simple observation, we can find that

π(x)− π(x − xθ) = S
(

A, x
1
2

)

.

We have another useful tool:

Buchstab’s identity

For any w ⩽ z , we have

S (A, z) = S (A,w)−
∑

w⩽p<z

S (Ap, p) .
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Sieve approach

Iwaniec and Jutila used the following decomposition:

Sieve decomposition (Iwaniec–Jutila 13
23
, Motohashi 0.56)

For some v ⩾ u ⩾ 2, we have

S
(

A, x
1
2

)

= S
(

A, x
1
v

)

−
∑

x
1
v ⩽p<x

1
u

S (Ap, p)−
∑

x
1
u ⩽p<x

1
2

S (Ap, p) .

They also used two important devices: weighted zero-density estimate and mean values of
Dirichlet polynomials.
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Weighted zero-density estimate

Let

M(s) =
∑

m∼M

amm
−s , N(s) =

∑

n∼N

bnn
−s , R(s) =

∑

r∼R

cr r
−s , K (s) =

∑

k∼K

k−s ,

where am, bn and cr are divisor–bounded. We want to get estimates of the type

Weighted zero-density estimate
∑

ρ=β+iγ
β⩾σ, |γ|<T

|M(ρ)N(ρ)| j x1−σ(log x)c .

Note that by a variant of the Explicit Formula above, this type of estimates lead to an
asymptotic formula for sums of the form

∑

pi∼Pi
1⩽i⩽n

(

π

(

x

p1 · · · pn

)

− π

(

x − xθ

p1 · · · pn

))

.
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Mean values of Dirichlet polynomials

Using Iwaniec’s linear sieve, one need to estimate the ”error term”

∑

m∼M
n∼N

ambn

(

[ x

mn

]

−
[

x − xθ

mn

]

− xθ

mn

)

in order to bound sums like

S (A, z) and
∑

p∼P

S (Ap, z) .

This can be estimated by using classical mean and large value results of Dirichlet
polynomials and power moments of zeta function.
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Sieve approach

In 1979, Heath-Brown and Iwaniec used another sieve decomposition together with the
above tools to obtain 11

20 .

Sieve decomposition (Heath-Brown–Iwaniec 11
20
, Pintz 17

31
)

For some z
1
2 ⩽ D ⩽ z4, we have

S
(

A, x
1
2

)

=











S (A, z)−
∑

(

D
p1

) 1
3
⩽p2<p1<z

S (Ap1p2 , p2)











+
∑

(

D
p1

) 1
3
⩽p2<p1<z

S (Ap1p2 , p2)

−
∑

z⩽p1<D
1
2

S (Ap1 , p1)−
∑

D
1
2⩽p1<x

1
2

S

(

Ap1 ,

(

D

p1

) 1
3

)

+
∑

D
1
2⩽p1<x

1
2

(

D
p1

) 1
3
⩽p2<p1

S (Ap1p2 , p2) .
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Sieve approach

In their work (1120), Heath-Brown and Iwaniec only used the fourth power moment of zeta
function. Pintz (1731) inserted a deep result of Deshouillers and Iwaniec:

Deshouillers–Iwaniec’s Theorem (1982)

We have

∫ T

T0

∣

∣

∣

∣

∣

M

(

1

2
+ it

)2

K

(

1

2
+ it

)4
∣

∣

∣

∣

∣

j T 1+ε +M2T
1
2
+ε +M

5
4

(

T min

(

K ,
T

K

)) 1
2

.

This can be seen as an approximation of the sixth power moment of zeta function.
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Sieve approach

Using another delicate sieve decomposition, Iwaniec and Pintz in 1984 got 23
42 .

Sieve decomposition (Iwaniec–Pintz 23
42
, Mozzochi 1051

1920
)

For 1051
1920 < θ ⩽

23
42 , we have

S
(

A, x
1
2

)

⩾













S
(

A, x7−12θ
)

−
∑

p2<p1<x7−12θ

p1p
3
2⩾x

12θ−2
5

S (Ap1p2 , p2)













+
∑

p2<p1

x
8−8θ

5 <p1p
2
2<x

13θ−3
5

S (Ap1p2 , p2)−
∑

x7−12θ⩽p1<x
6θ−1

5

S (Ap1 , p1)
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Sieve approach

Sieve decomposition (Iwaniec–Pintz 23
42
, Mozzochi 1051

1920
)

−
∑

x
6θ−1

5 ⩽p1<x
8θ−1

7

S

(

Ap1 ,min

(

x
4θ+1
5

p1
, x

20θ−9
11

))

−
∑

x
8θ−1

7 ⩽p1<x
1
2

S



Ap1 ,

(

x
12θ−2

5

p1

)
1
3





+
∑

x
6θ−1

5 ⩽p1<x
1
2

p1p2⩽x
3θ+2
5

p1p
−1
2 ⩽x

8θ−3
5

S (Ap1p2 , p2) .
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Vaughan’s identity

While working on the Bombieri–Vinogradov theorem, Vaughan introduced a finite

approximation to − ζ′(s)
ζ(s) . Note that

∞
∑

n=1

Λ(n)

ns
= −ζ ′(s)

ζ(s)
= F (s)− ζ(s)F (s)G (s)− ζ ′(s)G (s)

+

(

−ζ ′(s)

ζ(s)
− F (s)

)

(1− ζ(s)G (s)),

F (s) =
∑

m⩽U

Λ(n)n−s , G (s) =
∑

d⩽V

µ(d)d−s

and all functions of the form n−s are linearly independent, we have the following
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Vaughan’s identity

Vaughan’s identity

Λ(n) = a1(n) + a2(n) + a3(n) + a4(n),

where

a1(n) =

{

Λ(n), n ⩽ U,

0, n > U,
a2(n) = −

∑

mdr=n
m⩽U, d⩽V

Λ(n)µ(d),

a3(n) =
∑

dh⩽n
d⩽V

µ(d) log h, a4(n) =
∑

mk=n
m>U, k>1

Λ(m)
∑

d |k
d⩽V

µ(d).
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Vaughan’s identity

This identity helps us break
∑

n∼N Λ(n)f (n) into sums (taking U = V = xβ for some
0 < β < 1

2)
∑

m⩽M
mn⩽x

amf (mn), M ⩽ max(x1−β , x2β)

and
∑

m∼K
mn⩽x

ambnf (mn), xβ ⩽ K ⩽ x1−β .

29 / 81



Heath-Brown’s identity

In 1982, Heath-Brown produced what he called a generalized Vaughan identity by using
the following formula, which is valid for all k ∈ N and any function M(s):

ζ ′(s)

ζ(s)
=

∑

1⩽j⩽k

(−1)j−1

(

k

j

)

ζ(s)j−1ζ ′(s)M(s)j + ζ(s)−1(1− ζ(s)M(s))kζ ′(s).

Heath-Brown used this to give another proof of Huxley’s 7
12 with an asymptotic formula.

Let
M(s) =

∑

m⩽M

µ(m)m−s ,

this implies an identity
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Heath-Brown’s identity

Heath-Brown’s identity

Λ(n) =
∑

1⩽j⩽k

(−1)j−1

(

k

j

)

aj(n),

where
aj(n) =

∑

n=r1···r2j

i>j⇒ri⩽x
1
k

(log r1)µ(rj+1) · · ·µ(r2j).

One can use Heath-Brown’s identity to construct several identities that do not follow
from Vaughan’s identity.
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Heath-Brown’s identity

Heath-Brown’s identity

Suppose that u ⩽ N
1
10 , then

∑

n∼N

Λ(n)f (n)

can be written as j (log x)5 sums of the forms

∑

m⩽M
n∼N

amf (mn), M j Nu

and
∑

m∼M
n∼N

ambnf (mn), u2 ⩽ M j N
1
3 .
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Heath-Brown’s identity

Heath-Brown’s identity has the advantage that more flexible sums are produced.
However, the disadvantage persists that if one makes a problem harder, the method
collapses. There is no ”grey area” between an asymptotic formula and no result at all.
Heath-Brown produced another identity that can be applied to remove this disadvantage.

Heath-Brown–Linnik identity

For z > x
1
k , we have

S
(

A, x
1
2

)

=
∑

1⩽j⩽k

(−1)j−1

j
S
(

Ak , z
)

+ O
(

x
1
2

)

,

where Ak = {n1 · · · nk ∈ A}.

In 1988, he used this identity with k = 7 to prove 7
12 − ε with an asymptotic formula.
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Heath-Brown’s identity

Heath-Brown (unpublished) used this identity with k = 7 to prove

0.99
x

11
20
+ε

log x
⩽ π(x)− π(x − x

11
20
+ε) ⩽ 1.01

x
11
20
+ε

log x
.

Lou and Yao (1992) used this identity with k = 7 to prove

0.969
x

6
11
+ε

log x
⩽ π(x)− π(x − x

6
11
+ε) ⩽ 1.031

x
6
11
+ε

log x

and

π(x)− π(x − x
7
13
+ε) k x

7
13
+ε

log x
.
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Weighted zero-density estimate

In 1996, Baker and Harman used a stronger version of the weighted zero-density estimate:

Weighted zero-density estimate, stronger version
∑

ρ=β+iγ
|γ|<T

xβ−1 |M(ρ)N(ρ)| j (log x)−A.

Using this estimate and a truncated Perron’s formula, they got

∑

mnr∈A
m∼M
n∼N

ambnΛ(r)−xθ
∑

mnr∈A
m∼M
n∼N

ambn

mn
⩽ xθ

∑

ρ=β+iγ
0⩽β⩽1
|γ|<T

xβ−1 |M(ρ)N(ρ)|+O
(

xθ−ε
)

j xθ(log x)−A.
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Sieve approach

By using a truncated Perron’s formula to remove the dependencies between variables,
they obtained an asymptotic formula for sums of the form

∑

pi∼Pi
1⩽i⩽n

S (Ap1···pn , pn) .
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Sieve approach

The most important observation of Baker and Harman is that we can use Buchstab’s
identity in this way:

∑

pi∼Pi
1⩽i⩽n

S (Ap1···pn , z) =
∑

pi∼Pi
1⩽i⩽n

S (Ap1···pn , x
ε)−

∑

pi∼Pi
1⩽i⩽n

xε⩽pi+1<z

S
(

Ap1···pn+1 , pn+1

)

.

The estimate of the first sum on the right-hand side using Iwaniec’s linear sieve is
asymptotic. This means that if we can find z = xδ with δ > 0 as large as possible such
that the second sum on the right-hand side has an asymptotic formula, then we can
obtain an asymptotic formula for the sum on the left-hand side. This estimate is better
than the bounds we get using only Iwaniec’s linear sieve.
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Sieve approach

Suppose that we want to give a lower bound for
∑

pi∼Pi
1⩽i⩽n

S (Ap1···pn , z).

Using Iwaniec’s linear sieve directly, we only have

∑

pi∼Pi
1⩽i⩽n

S (Ap1···pn , z) ⩾ (1 + o(1))
xθ

log x
e−γf (u).

Using the above procedure, we can get

∑

pi∼Pi
1⩽i⩽n

S (Ap1···pn , z) = (1 + o(1))
xθ

log x
ω(u).

Note that

ω(u) =
e−γ(f (u) + F (u))

2
.
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Sieve approach

In 2001, Baker, Harman and Pintz (BHP) developed a new method of estimating
∑

pi∼Pi
1⩽i⩽n

S (Ap1···pn , pn). They used mean value results of Dirichlet polynomials instead of

weighted zero-density estimates. Specifically, they proved that

Theorem (BHP, 2001)

If
∫ T

T0

∣

∣

∣

∣

M

(

1

2
+ it

)∣

∣

∣

∣

j x
1
2 (log x)−A,

then
∑

m∈A

am = (1 + o(1))
xθ

X

∑

x−X<m⩽x

am,

where X = x exp (−3 log x)
1
3 .
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Sieve approach

Using the above Theorem, one can easily show the two relations between mean value
results and asymptotic formulas:

∫ T

T0

|MNR | j x
1
2 (log x)−A =⇒

∑

mnr∈A
m∼M
n∼N

ambncr (A)

and
∫ T

T0

|MNK | j x
1
2 (log x)−A =⇒

∑

m∼M
n∼N

ambnS

(

Amn, exp

(

log x

log log x

))

. (B)

Thus, one only need to find longer ranges of M and N such that (A) or (B) holds.
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Sieve approach

BHP used Watt’s Theorem together with Hölder’s inequality to get more type (B)
estimates.

Watt’s Theorem (1995)

We have
∫ T

T0

∣

∣

∣

∣

∣

M

(

1

2
+ it

)2

K

(

1

2
+ it

)4
∣

∣

∣

∣

∣

j T 1+ε +M2T
1
2
+ε.

Watt’s Theorem improves Deshouillers–Iwaniec’s Theorem.
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Sieve approach

∑

pi∼Pi
1⩽i⩽n

S (Ap1···pn , z) =
∑

pi∼Pi
1⩽i⩽n

S

(

Ap1···pn , exp

(

log x

log log x

))

−
∑

pi∼Pi
1⩽i⩽n
pi+1<z

S
(

Ap1···pn+1 , pn+1

)

,

S
(

A, x
1
2

)

= S (A, z)−
∑

z⩽p1<x
1
2

S (Ap1 , z) +
∑

z⩽p2<p1<x
1
2

S (Ap1p2 , p2)

= S (A, z)−
∑

z⩽p1<x
1
2

S (Ap1 , z) +
∑

z⩽p2<p1<x
1
2

S (Ap1p2 , z)

−
∑

z⩽p3<p2<p1<x
1
2

S (Ap1p2p3 , z) +
∑

z⩽p4<p3<p2<p1<x
1
2

S (Ap1p2p3p4 , p4)

= · · ·
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Sieve approach

• BHP (1996);

0.9953
x

11
20
+ε

log x
⩽ π(x)− π(x − x

11
20
+ε) ⩽ 1.0001

x
11
20
+ε

log x
.

• BHP (2001), 0.525;
• L. (preprint, 2025), 0.52;
1. More type (A) estimates with 5 or more variables (the lower bound of the sum of
all variables decreases as the number of variables increases);
2. An optimized sieve argument (one can get 0.523 with BHP’s original argument).

• Possible refinements:
1. More type (B) estimates obtained by Hölder’s inequality and higher power means
of zeta function

∫ T

T0

∣

∣

∣K
A
∣

∣

∣j T 1+A−4
8

+ε for 4 ⩽ A ⩽ 12;

2. Careful discussions on asymptotic regions and calculations.
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Legendre’s conjecture

Legendre’s conjecture

For any x > 1, there is at least one prime number between x2 and (x + 1)2.

Legendre’s conjecture (x → ∞)

We have
π(x + x

1
2 )− π(x) > 0.
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Cramér’s conjecture

Cramér’s conjecture (1937)

The interval
[x , x + f (x) log2 x ]

contains primes for some f (x) → 1 as x → ∞.
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Lindelöf Hypothesis

Lindelöf Hypothesis (LH)

For any ε > 0, we have

ζ

(

1

2
+ it

)

j tε.

Clearly, we have RH ⇒ LH.
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Primes in short intervals

Under RH

We have
π(x + x

1
2 log x)− π(x) k x

1
2 .

Under LH

We have
π(x + x

1
2
+ε)− π(x) ∼ x

1
2
+ε(log x)−1.

Unconditional

We have
π(x + x

17
30
+ε)− π(x) ∼ x

17
30
+ε(log x)−1,

π(x + x0.52)− π(x) k x0.52(log x)−1.
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Primes in almost all short intervals

In 1943, Selberg obtained the following two results.

Theorem (Selberg, 1943)

1. Under RH, Cramér’s interval contains primes for almost all x if f (x) → ∞ as x → ∞.
2. The interval

[x , x + x
19
77
+ε]

contains ∼ x
19
77+ε

log x primes for almost all x .
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Primes in almost all short intervals, records I

• 19
77 = 0.2468, Selberg, 1943; (θ1 = 2θ0 − 1)

• 1
5 = 0.2000, Montgomery, 1971; (35 ô 1

5)

• 1
6 = 0.1667, Huxley, 1972; ( 7

12 ô 1
6)

• 1
7.5 = 0.1333, Guth–Maynard, 2025. (1730 ô 1

7.5)
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Primes in almost all short intervals

Using sieve methods, Harman got in 1982 that

Theorem (Harman, 1982)

The interval
[x , x + x

1
10
+ε]

contains k x
1
10+ε

log x primes for almost all x .
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Primes in almost all short intervals, records II

• 1
10 = 0.1000, Harman, 1982;

• 14
159 = 0.0881, Lou–Yao (Unpublished),
1985;

• 1
12 = 0.0833, Harman, 1983;
Heath-Brown, 1984;

• 1
13 = 0.0769, Jia, 1995;

• 17
227 = 0.0749, Lou–Yao (Unpublished),
1985;

• 1
13.5 = 0.0740, H. Li, 1995;

• 1
14 = 0.0714, Jia, 1995; Watt, 1995;

• 1
15 = 0.0667, H. Li, 1997;

• 1
16 = 0.0625, Baker–Harman–Pintz,
1997;

• 1
18 = 0.0556, Wong, 1996; Jia, 1996;
Harman, 2007;

• 1
20 = 0.0500, Jia, 1996;

• 1
21.5 = 0.0476, L. (preprint), 2024.
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A weak Legendre’s conjecture

Legendre’s conjecture

The interval
[x , x + x

1
2 ]

contains an integer with a prime factor larger than x1.

Conjecture LPF (θ)

The interval
[x , x + x

1
2 ]

contains an integer with a prime factor larger than xθ for some θ > 0.

52 / 81



Largest prime factors of integers in short intervals

In 1969, Ramachandra got the first result in this direction.

Theorem (Ramachandra, 1969)

The interval
[x , x + x

1
2 ]

contains an integer with a prime factor larger than x0.576.
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Largest prime factors of integers in short intervals

• 0.576, Ramachandra, 1969;

• 0.625, Ramachandra, 1970;

• 0.662, Graham, 1981;

• 0.675225, Zhu, 1987;

• 0.692, Jia, 1986;

• 0.7, Baker, 1986;

• 0.71, Jia, 1989;

• 0.723, Jia, 1993; H.-Q. Liu, 1993;

• 0.728, Jia, 1996;

• 0.732, Baker–Harman, 1995;

• 0.738, H.-Q. Liu–Wu, 1999;

• 0.74, Harman, 2007;

• 0.7428, Baker–Harman, 2009;

• 0.7437, L. (preprint), 2025.
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Largest prime factors of integers in short intervals

If we increase the interval length to x
1
2
+ε, then we can get better results since many

powerful analytic tools, such as the estimation of Dirichlet polynomials, can be used. In
1973, Jutila obtained

Theorem (Jutila, 1973)

The interval
[x , x + x

1
2
+ε]

contains an integer with a prime factor larger than x
2
3
−ε.
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Largest prime factors of integers in short intervals

• 2
3 = 0.6666, Jutila, 1973;

• 73
100 = 0.7300, Balog, 1980;

• 193
250 = 0.7720, Balog, 1984;

• 41
50 = 0.8200, Balog–Harman–Pintz,
1983;

• 11
12 = 0.9166, Heath-Brown, 1996;

• 17
18 = 0.9444, Heath-Brown–Jia, 1998;

• 19
20 = 0.9500, Harman, 2007;

• 24
25 = 0.9600, Haugland, 1998;

• 25
26 = 0.9615, Jia–M.-C. Liu, 2000;

• 51
53 = 0.9622, L. (preprint), 2024.
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Largest prime factors of integers in short intervals

In 1983, Balog, Harman and Pintz proved a result with ”medium” interval lengths.

Theorem (Balog–Harman–Pintz, 1983)

The interval
[x , x + x

1
2 (log x)A]

contains an integer with a prime factor larger than x0.712−ε.
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Largest prime factors of integers in short intervals

• 0.7120, Balog–Harman–Pintz, 1983;

• 5
6 = 0.8333, Lou, 1984;

• 18
19 = 0.9473, Merikoski, 2021; (A < 1.39)

• 37
39 = 0.9487, L. (Unpublished); (A < 1.39)
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Almost–primes in short intervals

Instead of considering the size of prime factors, one can also consider the number of
prime factors. We define the ”Almost–primes” Pr and Er as

Definition (Almost–primes)

An integer n is a Pr if n has at most r prime factors counted with multiplicity.
An integer n is an Er if n has exactly r prime factors counted with multiplicity.

Of course, short–interval results for Pr are easier to obtain than corresponding results for
Er .
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Almost–primes in short intervals

Theorem (Brun, 1920)

The interval [x , x + x
1
2 ] contains a P11. LPF (

1
11) is true.

Theorem (Wang, 1957)

The interval [x , x + x
1
2 ] contains a P3. LPF (

1
3) is true.

Theorem (Wang, 1959)

The interval [x , x + x
10
17 ] contains a P2.

The interval [x , x + x
20
49 ] contains a P3.
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Almost–primes in short intervals

• 10
17 = 0.5882, Wang, 1959;

• 14
25 = 0.5600, Jurkat–Richert, 1965;

• 6
11 = 0.5454, Richert, 1969;

• 1
2 = 0.5000 (LPF (12) is true), Chen, 1975;

• 0.4856, Laborde, 1978;

• 0.4770, Chen, 1979;

• 0.4550, Halberstam–Heath-Brown–Richert, 1981;

• 0.4500, Iwaniec–Laborde, 1981;

• 0.4476, Halberstam–Richert, 1985;

• 63
142 = 0.4436, Fouvry, 1990;

• 0.4400, Wu, 1992;

• 0.4382, H. Li, 1994;

• 0.4378, Cao, 1995;

• 0.4360, H.-Q. Liu, 1996;

• 0.43596, Sargos–Wu, 2000;

• 101
232 = 0.43535, Wu, 2010.
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Almost–primes in short intervals

Theorem (Matomäki–Teräväinen, 2023)

The interval [x , x + x
1
2 (log x)1.55] contains an E3.
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Almost–primes in almost all short intervals

Author Form Length Year

Wolke E2 (log x)5000000 1979

Harman E2 (log x)7+ε 1979

Bourgain E2 (log x)6.86 2000

Teräväinen E2 (log x)3.51+ε 2016

Matomäki–Teräväinen E2 (log x)2.1+ε 2023
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Almost–primes in almost all short intervals

Author Form Length Year

Heath-Brown P2 x
1
11 1978

Heath-Brown P3 (log x)35+ε 1978

Friedlander P4 (log x)5 1982

Motohashi P2 xε Unpublished

Mikawa P2 h(x)(log x)5 1989

Matomäki P2 h(x) log x 2022

Teräväinen E3 (log x)(log log x)6+ε 2016

Teräväinen Ek (log x)(logk−1 x)
Ck+ε 2016
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Mean square gap between primes

In 1943, Selberg proved the following result under RH.

Theorem (Selberg, 1943)

Under RH, we have
∑

pn⩽x

(pn+1 − pn)
2 j x(log x)3.
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Mean square gap between primes

In 1978, Heath-Brown obtained a weaker bound of Selberg’s mean square gap
unconditionally.

Theorem (Heath-Brown, 1978)

We have
∑

pn⩽x

(pn+1 − pn)
2 j x

4
3
+ε.
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Mean square gap between primes

• 1 (on RH), Selberg, 1943;

• 4
3 = 1.3333, Heath-Brown, 1978;

• 1413
1067 = 1.3242, Heath-Brown, 1979;

• 7
6 = 1.1666 (on LH), Heath-Brown, 1979;

• 23
18 = 1.2777, Heath-Brown, 1979;

• 1 (on LH), Yu, 1996;

• 5
4 = 1.25, Peck, 1996; Maynard, 2012;

• 123
100 = 1.23, Stadlmann, 2022.
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Large differences between primes

In the same paper, Selberg also considered a variant of the mean square gap.

Theorem (Selberg, 1943)

Under RH, we have
∑

pn⩽x

pn+1−pn⩾x
1
2+ε

(pn+1 − pn) j x
1
2
+ε.

We call this LD(12 + ε, 12).
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Large differences between primes

• LD(12 + ε, 12) (on RH), Selberg, 1943;

• LD(12 ,
29
30 = 0.9666), Wolke, 1975;

• LD(12 + ε, 8598 = 0.8673), Cook, 1979;

• LD(12 + ε, 17592134 = 0.8242), Huxley, 1980;

• LD(12 + ε, 34) (on LH), Huxley, 1980;

• LD(12 ,
215
266 = 0.8082), Ivić, 1979;

• LD(12 ,
3
4), Heath-Brown, 1979;

• LD(12 + ε, 58), Heath-Brown, 1979;

• LD(12 ,
25
36 = 0.6944), Peck, 1998;

• LD(12 ,
2
3), Matomäki, 2007;

• LD(12 − δ, 23 + 5δ), Islam, 2015

(0 ⩽ δ ⩽
1
6

√
327− 3 = 0.01385);

• LD(12 ,
3
5), Heath-Brown, 2021;

• LD(12 , 0.57), Järviniemi, 2022;

• LD(0.45, 0.63), Järviniemi, 2022;
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Primes in short intervals: Explicit results

Primes in short intervals: Explicit version 1

For all x ⩾ N0, we have
π(x + xθ)− π(x) > 0.

Author θ N0 Year

Caldwell–Cheng 2
3 1 (on RH) 2005

Dudek 2
3 exp(exp(33.217)) 2014

Mattner 2
3 exp(exp(33.1981)) 2017

Cully-Hugill 2
3 exp(exp(32.892)) 2021

Mossinghoff–Trudgian–Yang 2
3 exp(exp(32.76)) 2024

Cully-Hugill 2
3 exp(exp(32.537)) 2023
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Primes in short intervals: Explicit results

Author θ N0 Year

Caldwell–Cheng 2
3 1 (on RH) 2005

Dudek 1− 1
5·109

1 2014

Mattner 1− 1
1.5·106

1 2017

Cully-Hugill 1− 1
296 1 2021

Cully-Hugill 1− 1
180 1 2021

Cully-Hugill 1− 1
155 1 2023

Dudek–Johnston 1
2 (P4) 1 2025
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Primes in short intervals: Explicit results

Legendre’s conjecture

We have
π(x + x

1
2 )− π(x) > 0.

Primes in short intervals: Under RH / LH

We have
π(x + x

1
2
+ε)− π(x) ∼ x

1
2
+ε(log x)−1.

Primes in short intervals: Explicit version 2 (Under RH)

For all x ⩾ N0, we have
π(x + cx

1
2 log x)− π(x) > 0.
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Primes in short intervals: Explicit results

Author c N0 Year

von Koch c0 log x < ∞ (on RH) 1901

Schoenfeld 1
4π log x 599 (on RH) 1976

Cramér < ∞ sufficiently large (on RH) 1920

Goldston 5 sufficiently large (on RH) 1983

Ramaré–Saouter 8
5 = 1.6 2 (on RH) 2003

Dudek 4
π
= 1.2732 2 (on RH) 2015

Dudek–Grenié–Molteni 1.2204 2 (on RH) 2016

Dudek–Grenié–Molteni 1 + 4
log x 2 (on RH) 2016

Carneiro–Milinovich–Soundararajan 22
25 = 0.88 4 (on RH) 2019
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Exceptional characters and primes in short intervals

In 2001, Friedlander and Iwaniec first proved an asymptotic formula for the number of

primes in intervals shorter than x
1
2 under the existence of exceptional characters.

Theorem (Friedlander–Iwaniec, 2001)

We have
π(x + x

39
79 )− π(x) k x

39
79 (log x)−1

(

1 + O
(

L(1, χ)(log x)A
))

.

In 2024, L. (preprint) improved the exponent 39
79 = 0.4937 to 0.4923.
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Upper bounds

In 1973, Montgomery and Vaughan considered the upper bounds for the number of
primes in short intervals.

Theorem (Montgomery–Vaughan, 1973)

For any 0 < θ < 1, we have

π(x + xθ)− π(x) ⩽
2

θ

xθ

log x
.
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Upper bounds

• 2
θ
(0 < θ < 1), Montgomery–Vaughan, 1973;

• 18
15θ−2 (13 < θ < 1), Iwaniec, 1982;

• 4
θ+1 (12 < θ < 1), Iwaniec, 1982;

• 22
100θ−45 ( 6

11 < θ < 11
20), Lou–Yao, 1989;

• 1.031 ( 6
11 < θ < 1), Lou–Yao, 1992;

• 1.0001 (1120 < θ < 1), Baker–Harman–Pintz, 1997;

• 1 (1730 < θ < 1), Guth–Maynard, 2025.
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Upper bounds

Theorem (L. (preprint), 2025)

For any 0.52 < θ ⩽ 0.535, we have

π(x + xθ)− π(x) ⩽ C (θ)
xθ

log x
,

where

C (θ) ⩽































2.7626, 0.52 < θ ⩽ 0.521,

2.6484, 0.521 < θ ⩽ 0.522,

2.5630, 0.522 < θ ⩽ 0.523,

2.4597, 0.523 < θ ⩽ 0.524,

2.3759, 0.524 < θ ⩽ 0.535.
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Exceptional sets in PNT in short intervals

We also want to know how frequently an asymptotic formula in PNT in short intervals
”does not hold”.

Definition (E (θ))

For any 0 < θ < 1, let E (θ) denote the least exponent such that

π(x + xθ)− π(x) ∼ xθ(log x)−1

holds for all x ∈ [X , 2X ] except for a set of measure O(XE(θ)+ε).

Note that we have the following simple relations:

E (θ) = −∞, θ >
17

30
; E (θ) ⩾ 0, θ ⩽

17

30
; E (θ) < 1, θ ⩾

1

21.5
.
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Exceptional sets in PNT in short intervals

• E (θ) ⩽ 1− θ for 0 < θ ⩽
1
2 (on RH), Bazzanella–Perelli, 2000;

• E (θ) ⩽ 3(1−θ)
2 for 1

2 < θ ⩽
11
21 , Bazzanella, 2000;

• E (θ) ⩽ 47−42θ
35 for 11

21 < θ ⩽
23
42 , Bazzanella, 2000;

• E (θ) ⩽ 36θ2−96θ+55
39−36θ for 23

42 < θ ⩽
17
30 , Bazzanella, 2000;

• E (12) ⩽
3
5 , Heath-Brown, 2021;

• various bounds for E (θ), Gafni–Tao, 2025.
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Bounded gaps between primes

Let
Hm = lim inf

n→∞
(pn+m − pn).

Then we have the following bounds:

• H1 ⩽ 246, Polymath8b, 2014;

• H2 ⩽ 396504, Stadlmann, 2025;

• H3 ⩽ 24407016, Stadlmann, 2025;

• H4 ⩽ 1391051532, Stadlmann, 2025;

• H5 ⩽ 77510685234, Stadlmann, 2025;

• Hm j e3.8075m, Stadlmann, 2025.
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Thank you!
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