
PRIMES IN ARITHMETIC PROGRESSIONS TO SMOOTH MODULI: A MINORANT

VERSION
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Abstract. The author prove that there exists a function ρ(n) which is a minorant for the prime indicator

function 1p(n) and has distribution level 65
123

in arithmetic progressions to smooth moduli. This refines the

previous results of Baker–Irving and Stadlmann.
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1. Introduction

One of the famous topics in number theory is to study the distribution of primes in arithmetic progressions.
Given some θ > 0, A > 0 and sets Q(x) ⊆ N, we are looking for results of the type

∑
q⩽xθ−ε

q∈Q(x)
(q,a)=1

∣∣∣∣∣∣∣∣
∑
n⩽x

n≡a( mod q)

1p(n)−
1

φ(q)

∑
n⩽x

(n,q)=1

1p(n)

∣∣∣∣∣∣∣∣≪
x

(log x)A
. (1)

When Q(x) = N, the most famous result is due to Bombieri [2] and Vinogradov [9], who showed in 1965 that
(1) holds with θ = 1

2 . The exponent 1
2 is also the limit obtained under Generalized Riemann Hypothesis

(GRH), Hence improving this result directly is extremely difficult.

Now we are focusing on the case Q(x) =
{
q : q ∈ N, q |

∏
p<xδ p

}
or square–free xδ–smooth moduli. Then

(1) may be written as

∑
q⩽xθ−ε

q|
∏

p<xδ p

(q,a)=1

∣∣∣∣∣∣∣∣
∑
n⩽x

n≡a( mod q)

1p(n)−
1

φ(q)

∑
n⩽x

(n,q)=1

1p(n)

∣∣∣∣∣∣∣∣≪
x

(log x)A
(2)

in this case. This type of results have played an important role in the study of bounded gaps between primes,
see [10] [6]. In [10] Zhang proved (2) holds with θ = 1

2 +
1

584 ≈ 0.5017, which was later improved by Polymath

[6] to θ = 1
2 + 7

300 ≈ 0.5233 and by Stadlmann to θ = 1
2 + 1

40 = 0.525.
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In 2017, Baker and Irving [1] considered a variant of (2). They constructed a minorant ρ(n) for the prime
indicator function 1p(n) and proved corresponding result

∑
q⩽xθ−ε

q|
∏

p<xδ p

(q,a)=1

∣∣∣∣∣∣∣∣
∑
n⩽x

n≡a( mod q)

ρ(n)− 1

φ(q)

∑
n⩽x

(n,q)=1

ρ(n)

∣∣∣∣∣∣∣∣≪
x

(log x)A
(3)

with θ = 1
2 + 7

300 + 187
197700 ≈ 0.5243. In their paper Harman’s sieve [3] was used to construct a suitable

minorant and prove stronger results on the length of bounded intervals containing many primes. Stadlmann
[8] further improved this to θ = 0.5253, which is the current best distribution level in this direction.

In this paper, we shall use a delicate sieve decomposition to prove (3) with θ = 65
123 ≈ 0.5285. A defect of

our method is that the lower bound of our minorant is much worse than it in [1] and [8]. Both of them use
the lower bounds (very close to 1p(n)) to handle the bounded prime gap problem. Our method leads to no
new things on that topic.

Theorem 1.1. There exists a function ρ(n) which satisfies the following properties:
(Minorant) ρ(n) is a minorant for the prime indicator function 1p(n). That is, we have

ρ(n) ⩽

{
1, n is prime,

0, otherwise.

(Size of prime factors) If n has a prime factor less than some fixed ξ > 0, then ρ(n) = 0.
(Lower bound) We have ∑

n∼x

ρ(n) ⩾ 0.02(1 + o(1))
x

log x
.

(Distribution in AP to smooth moduli) For any integer a that coprime to
∏

p<xδ p and any A > 0, we
have

∑
q⩽x

65
123

−ε

q|
∏

p<xδ p

(q,a)=1

∣∣∣∣∣∣∣∣
∑
n⩽x

n≡a( mod q)

ρ(n)− 1

φ(q)

∑
n⩽x

(n,q)=1

ρ(n)

∣∣∣∣∣∣∣∣≪
x

(log x)A
.

Throughout this paper, we always suppose that δ = 10−10 and x is sufficiently large. The letter p, with
or without subscript, is reserved for prime numbers. We define the sieve function ψ (n, z) as

ψ (n, z) =

{
1,

(
n,
∏

p<z p
)
= 1,

0, otherwise.

2. Asymptotic formulas

Lemma 2.1. Suppose that a function f : N → C satisfies one of the following conditions:
(Type–I) f = α ∗ β where α and β are coefficient sequences at scales M and N . Moreover, assume that

α satisfies the Siegel–Walfisz theorem, β is smooth, MN ≍ x and

N ⩾ x
43
123 ;

(Type–II) f = α ∗ β where α and β are coefficient sequences at scales M and N . Moreover, assume that
α and β satisfy the Siegel–Walfisz theorem, MN ≍ x and

x
56
123 ⩽ N ⩽ x

67
123 .
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Then for any integer a that coprime to
∏

p<xδ p and any A > 0, we have

∑
q⩽x

65
123

−ε

q|
∏

p<xδ p

(q,a)=1

∣∣∣∣∣∣∣∣
∑
n⩽x

n≡a( mod q)

f(n)− 1

φ(q)

∑
n⩽x

(n,q)=1

f(n)

∣∣∣∣∣∣∣∣≪
x

(log x)A
.

Proof. The proof is very similar to that of [[7], Lemma 3.20 (I)(II)]. We remark that we use the arithmetical
information of Polymath [[6], Theorem 2.8] instead of the newer information of Stadlmann [[8], Proposition
3.1]. This is because Stadlmann’s information has a restriction θ < 1

2 + 1
36 ≈ 0.5278, while in [6] this

restriction becomes θ < 1
2 + 1

34 ≈ 0.5294. □

By Lemma 2.1, we can easily deduce the following two lemmas.

Lemma 2.2. Let

f(x) =
∑

p1,...,pn

ψ

(
n

p1 · · · pn
, x

11
123

)
.

Then Lemma 2.1 holds for f(n) if we can group {1, · · · , n} into I and J such that∏
i∈I

pi ⩽ x
56
123 and

∏
j∈J

pj ⩽ x
8
41 .

Lemma 2.3. Let

f(x) =
∑

p1,...,pn

ψ

(
n

p1 · · · pn
, pn

)
.

Then Lemma 2.1 holds for f(n) if we can group {1, · · · , n} into I and J such that

x
56
123 ⩽

∏
i∈I

pi ⩽ x
67
123 .

Our aim is to decompose the prime indicator function 1p(n) into sieve functions of the above forms
and show that the total loss from the dropped parts (which don’t satisfy the conditions in Lemma 2.2 or
Lemma 2.3 and must be non–negative) is less than 1 − 0.02 = 0.98 in order to get a positive lower bound
with same order of magnitude.

3. The final decomposition

In this section we will decompose the prime indicator function 1p(n) using Buchstab’s identity. Let ω(u)
denotes the Buchstab function determined by the following differential–difference equation{

ω(u) = 1
u , 1 ⩽ u ⩽ 2,

(uω(u))′ = ω(u− 1), u ⩾ 2.

Moreover, we have the upper and lower bounds for ω(u):

ω(u) ⩾ ω0(u) =


1
u , 1 ⩽ u < 2,
1+log(u−1)

u , 2 ⩽ u < 3,
1+log(u−1)

u + 1
u

∫ u−1

2
log(t−1)

t dt, 3 ⩽ u < 4,

0.5612, u ⩾ 4,

ω(u) ⩽ ω1(u) =


1
u , 1 ⩽ u < 2,
1+log(u−1)

u , 2 ⩽ u < 3,
1+log(u−1)

u + 1
u

∫ u−1

2
log(t−1)

t dt, 3 ⩽ u < 4,

0.5617, u ⩾ 4.
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We shall use ω0(u) and ω1(u) to give numerical bounds for some sieve functions discussed below. Let
pj = (2x)tj and by Buchstab’s identity, we have

1p(n) = ψ
(
n, (2x)

1
2

)
= ψ

(
n, x

11
123

)
−

∑
11
123⩽t1<

56
123

ψ

(
n

p1
, x

11
123

)
−

∑
56
123⩽t1<

1
2

ψ

(
n

p1
, p1

)

+
∑

11
123⩽t1<

56
123

11
123⩽t2<min(t1, 12 (1−t1))

ψ

(
n

p1p2
, p2

)

= S1 − S2 − S3 + S4. (4)

By Lemmas 2.2–2.3 we know that Lemma 2.1 holds for S1–S3, hence we only need to consider S4. Before
further decomposing, we define non–overlapping polygons A, B, C, D, whose union is{

(t1, t2) :
11

123
⩽ t1 <

56

123
,

11

123
⩽ t2 < min

(
t1,

1

2
(1− t1)

)
, t1 + t2 /∈

[
56

123
,
67

123

]}
.

These regions are defined as

A =

{
(t1, t2) :

11

123
⩽ t1 <

56

123
,

11

123
⩽ t2 < min

(
t1,

1

2
(1− t1)

)
, t1 + t2 <

56

123
, t2 <

8

41

}
,

B =

{
(t1, t2) :

11

123
⩽ t1 <

56

123
,

11

123
⩽ t2 < min

(
t1,

1

2
(1− t1)

)
, t1 + t2 >

67

123
, t2 <

8

41

}
,

C =

{
(t1, t2) :

11

123
⩽ t1 <

56

123
,

11

123
⩽ t2 < min

(
t1,

1

2
(1− t1)

)
, t1 + t2 >

67

123
, t2 >

8

41

}
,

D =

{
(t1, t2) :

11

123
⩽ t1 <

56

123
,

11

123
⩽ t2 < min

(
t1,

1

2
(1− t1)

)
, t1 + t2 <

56

123
, t2 >

8

41

}
.

Now we have

S4 =
∑

(t1,t2)∈A

ψ

(
n

p1p2
, p2

)
+

∑
(t1,t2)∈B

ψ

(
n

p1p2
, p2

)
+

∑
(t1,t2)∈C

ψ

(
n

p1p2
, p2

)
+

∑
(t1,t2)∈D

ψ

(
n

p1p2
, p2

)
= SA + SB + SC + SD. (5)

We first decompose SA. By Buchstab’s identity, we have

SA =
∑

(t1,t2)∈A

ψ

(
n

p1p2
, p2

)

=
∑

(t1,t2)∈A

ψ

(
n

p1p2
, x

11
123

)
−

∑
(t1,t2)∈A

11
123⩽t3<min(t2, 12 (1−t1−t2))

ψ

(
n

p1p2p3
, x

11
123

)

+
∑

(t1,t2)∈A
11
123⩽t3<min(t2, 12 (1−t1−t2))

11
123⩽t4<min(t3, 12 (1−t1−t2−t3))

ψ

(
n

p1p2p3p4
, p4

)

= SA1 − SA2 + SA3. (6)

We know that Lemma 2.1 holds for SA1. Since t3 < t2 <
8
41 and t1 + t2 <

56
123 , Lemma 2.1 also holds for

SA2. For SA3, we can use Buchstab’s identity twice more to reach a six–dimensional sum if we can group
{1, 2, 3, 4, 4} into I and J satisfy the conditions in Lemma 2.2. We can also use Lemma 2.3 to handle part
of SA3 if we can group {1, 2, 3, 4} into I and J satisfy the corresponding conditions. For the remaining part,
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we cannot sure that it has a distribution level of 65
123 , hence we need to discard it. We do the same thing for

the six–dimensional sum we just mentioned. In this way we obtain a loss from SA of(∫ 1
2

11
123

∫ min(t1, 12 (1−t1))

11
123

∫ min(t2, 12 (1−t1−t2))

11
123

∫ min(t3, 12 (1−t1−t2−t3))

11
123

Boole[(t1, t2, t3, t4) ∈ UA3]
ω1

(
1−t1−t2−t3−t4

t4

)
t1t2t3t24

dt4dt3dt2dt1


+

(∫ 1
2

11
123

∫ min(t1, 12 (1−t1))

11
123

∫ min(t2, 12 (1−t1−t2))

11
123

∫ min(t3, 12 (1−t1−t2−t3))

11
123∫ min(t4, 12 (1−t1−t2−t3−t4))

11
123

∫ min(t5, 12 (1−t1−t2−t3−t4−t5))

11
123

Boole[(t1, t2, t3, t4, t5, t6) ∈ UA31]
ω1

(
1−t1−t2−t3−t4−t5−t6

t6

)
t1t2t3t4t5t26

dt6dt5dt4dt3dt2dt1


< 0.071778, (7)

where

UA3(t1, t2, t3, t4) := {(t1, t2) ∈ A,

11

123
⩽ t3 < min

(
t2,

1

2
(1− t1 − t2)

)
,

{1, 2, 3} cannot be partitioned into I and J in Lemma 2.3,

11

123
⩽ t4 < min

(
t3,

1

2
(1− t1 − t2 − t3)

)
,

{1, 2, 3, 4} cannot be partitioned into I and J in Lemma 2.3,

{1, 2, 3, 4, 4} cannot be partitioned into I and J in Lemma 2.2,

11

123
⩽ t1 <

1

2
,

11

123
⩽ t2 < min

(
t1,

1

2
(1− t1)

)}
,

UA31(t1, t2, t3, t4, t5, t6) := {(t1, t2) ∈ A,

11

123
⩽ t3 < min

(
t2,

1

2
(1− t1 − t2)

)
,

{1, 2, 3} cannot be partitioned into I and J in Lemma 2.3,

11

123
⩽ t4 < min

(
t3,

1

2
(1− t1 − t2 − t3)

)
,

{1, 2, 3, 4} cannot be partitioned into I and J in Lemma 2.3,

{1, 2, 3, 4, 4} cannot be partitioned into I and J in Lemma 2.2,

11

123
⩽ t5 < min

(
t4,

1

2
(1− t1 − t2 − t3 − t4)

)
,

{1, 2, 3, 4, 5} cannot be partitioned into I and J in Lemma 2.3,

11

123
⩽ t6 < min

(
t5,

1

2
(1− t1 − t2 − t3 − t4 − t5)

)
,

{1, 2, 3, 4, 5, 6} cannot be partitioned into I and J in Lemma 2.3,

11

123
⩽ t1 <

1

2
,

11

123
⩽ t2 < min

(
t1,

1

2
(1− t1)

)}
.
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For SB we cannot perform a straightforward decomposition as in SA. Nonetheless, we can perform a
variable role–reversal since we have t1 <

56
123 , 1− t1 − t2 <

56
123 and t2 <

8
41 . We refer the readers to [4], [5]

and for more applications of role–reversals. By similar process as in [5], we have

SB =
∑

(t1,t2)∈B

ψ

(
n

p1p2
, p2

)

=
∑

(t1,t2)∈B

ψ

(
n

p1p2
, x

11
123

)
−

∑
(t1,t2)∈B

11
123⩽t3<min(t2, 12 (1−t1−t2))

ψ

(
n

p1p2p3
, p3

)

=
∑

(t1,t2)∈B

ψ

(
n

p1p2
, x

11
123

)
−

∑
(t1,t2)∈B

11
123⩽t3<min(t2, 12 (1−t1−t2))

ψ

(
n

βp2p3
,

(
2x

βp2p3

) 1
2

)

=
∑

(t1,t2)∈B

ψ

(
n

p1p2
, x

11
123

)
−

∑
(t1,t2)∈B

11
123⩽t3<min(t2, 12 (1−t1−t2))

ψ

(
n

βp2p3
, x

11
123

)

+
∑

(t1,t2)∈B
11
123⩽t3<min(t2, 12 (1−t1−t2))

11
123⩽t4<

1
2 t1

ψ

(
n

βp2p3p4
, p4

)

= SB1 − SB2 + SB3, (8)

where β ∼ (2x)1−t1−t2−t3 and (β, P (p3)) = 1. We know that Lemma 2.1 holds for SB1 since t1 <
56
123 and

t2 <
8
41 . By a trivial argument, we know that β is the product of at most 4 primes, each of size > x

11
123 .

Then by a splitting argument we know that Lemma 2.1 also holds for SB2. We can also use the splitting
argument to handle SB3. If we can group {0, 2, 3, 4} (where 0 represents the product of primes that forms
β) into I and J satisfy the conditions in Lemma 2.3, then Lemma 2.1 holds for SB3. Working as above, we
get a loss from SB of(∫ 1

2

11
123

∫ min(t1, 12 (1−t1))

11
123

∫ min(t2, 12 (1−t1−t2))

11
123

∫ 1
2 t1

11
123

Boole[(t1, t2, t3, t4) ∈ UB3]
ω1

(
t1−t4
t4

)
ω1

(
1−t1−t2−t3

t3

)
t2t23t

2
4

dt4dt3dt2dt1


< 0.354111, (9)

where

UB3(t1, t2, t3, t4) := {(t1, t2) ∈ B,

11

123
⩽ t3 < min

(
t2,

1

2
(1− t1 − t2)

)
,

{1, 2, 3} cannot be partitioned into I and J in Lemma 2.3,

11

123
⩽ t4 <

1

2
t1,

{0, 2, 3, 4} cannot be partitioned into I and J in Lemma 2.3,

11

123
⩽ t1 <

1

2
,

11

123
⩽ t2 < min

(
t1,

1

2
(1− t1)

)}
.

For SC and SD we can perform neither a straightforward decomposition nor a role–reversal, hence we
need to discard the whole regions. We remark that in [1] and [8] Heath–Brown’s identity was used to deal
with SC , but we can not do that here since the corresponding ”Polymath Type–III information” cannot
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cover all cases after a Heath–Brown decomposition. Discarding the two regions gives the losses of∫ 1
2

11
123

∫ min(t1, 12 (1−t1))

11
123

Boole[(t1, t2) ∈ C]
ω
(

1−t1−t2
t2

)
t1t22

dt2dt1 < 0.486844 (10)

and ∫ 1
2

11
123

∫ min(t1, 12 (1−t1))

11
123

Boole[(t1, t2) ∈ D]
ω
(

1−t1−t2
t2

)
t1t22

dt2dt1 < 0.062436. (11)

Finally, by combining (4)–(11), the total loss is less than

0.071778 + 0.354111 + 0.486844 + 0.062436 < 0.98

and the proof of Theorem 1.1 is completed.
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