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Abstract. The author sharpens a result of Jia and Liu (2000), showing that for sufficiently large x, the

interval [x, x+ x
1
2
+ε] contains an integer with a prime factor larger than x

51
53

−ε. This gives a solution with

γ = 2
53

to the Exercise 5.1 in Harman’s book.
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1. Introduction

The Legendre’s conjecture, which states that there is always a prime number between consecutive squares,
is one of Landau’s problems on prime numbers. Clearly this means that there is always a prime number in
the interval [x, x+ x

1
2 ]. However, we cannot prove it even on the Riemann Hypothesis. Assuming RH, one

can only show that there is always a prime number in the interval [x, x+ x
1
2 log x]. The best unconditional

result is due to Li [24], where he showed the interval [x, x+ x0.52] contains primes.
Instead of relaxing the length of the short interval, one can attack this conjecture by relaxing our restriction

of primes. A number with a large prime factor is a good approximation of prime numbers. Thus, we can try
to find numbers with a large prime factor in three intervals [x, x+ x

1
2 ], [x, x+ x

1
2 (log x)A] and [x, x+ x

1
2+ε].

For the first interval, Ramachandra [29] showed in 1969 that this interval contains a number with a prime
factor larger than x0.576. The exponent 0.576 has been improved to

0.625, 0.662, 0.675225, 0.692, 0.7, 0.71, 0.723, 0.728, 0.732, 0.738, 0.74 and 0.7428

by Ramachandra [30], Graham [10], Zhu [31], Jia [16], Baker [1], Jia [17], Jia [18] (and Liu [25]), Jia [19],
Baker and Harman [2], Liu and Wu [26], Harman [[11], Chapter 6] and Baker and Harman [3] respectively.
For the second interval, Balog, Harman and Pintz [7] showed that this interval contains a number with a
prime factor larger than x0.712, and the exponent 0.712 has been improved to 5

6 by Lou [27] and 18
19 by

Merikoski [28].
In this paper we shall focus on the third interval. In 1973, Jutila [22] showed that this interval contains

a number with a prime factor larger than x
2
3−ε. The exponent 2

3 has been improved to

0.73, 0.7338, 0.772, 0.82,
11

12
,
17

18
,
19

20
,
24

25
and

25

26

by Balog [5] [6], Balog, Harman and Pintz [8], Heath–Brown [13], Heath–Brown and Jia [14], Harman
[[11], Chapter 5], Haugland [12] and Jia and Liu [21] respectively. In his book, Harman [[11], Exercise 5.1]
encouraged us to reduce this exponent as much as we can. In this paper, we obtain the following result.
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Theorem 1.1. For sufficiently large x, the interval [x, x + x
1
2+ε] contains an integer with a prime factor

larger than x
51
53−ε.

Of course, our proof is much simpler than the similar arguments used in [14], [12] and [21]. Throughout
this paper, we always suppose that ε is a sufficiently small positive constant and B = B(ε) is a sufficiently
large positive constant. We choose ε such that K = 8

ε (
1

26.5 + ε
2 ) is an integer. The letter p, with or without

subscript, is reserved for prime numbers. Let v = x
51
53−

ε
2 , P = x

ε
8 and T0 = x

1
2−

ε
6 . Let c0, c1 and c2 denote

positive constants which may have different values at different places, and we write m ∼ M to mean that
c1M < m ⩽ c2M . We use M(s), N(s) and some other capital letters to denote the Dirichlet polynomials

M(s) =
∑

m∼M

a(m)m−s, N(s) =
∑
n∼N

b(n)n−s

where a(m), b(n) are complex numbers with a(m) = O(1) and b(n) = O(1). We also use P (s) to denote

P (s) =
∑

P<p⩽2P

p−s.

We define the boolean function as

Boole[X] =

{
1 if X is true,

0 if X is false.

2. Arithmetic Information

In this section we provide some arithmetic information (i.e. mean value bounds for some Dirichlet poly-
nomials) which will help us prove the asymptotic formulas for sieve functions.

Lemma 2.1. Suppose that MN = v where M(s), N(s) are Dirichlet polynomials and v
49
102 ≪ M ≪ v

53
102 .

Let b = 1 + 1
log x , T1 = (log x)2B, then for T1 ⩽ T ⩽ T0 we have∫ 2T

T

|M(b+ it)N(b+ it)PK(b+ it)|dt ≪ (log x)−B .

Proof. The proof is similar to that of [[21], Lemma 1]. □

Lemma 2.2. Suppose that MNL = v where M(s), N(s) are Dirichlet polynomials and L(s) =
∑

l∼L l−s.

Let b = 1 + 1
log x , T2 =

√
L. Assume that M ≪ v

53
102 and N ≪ v

53
204 , then for T2 ⩽ T ⩽ T0 we have∫ 2T

T

|M(b+ it)N(b+ it)L(b+ it)PK(b+ it)|dt ≪ (log x)−B .

Proof. The proof is similar to that of [[21], Lemma 2]. □

Lemma 2.3. Suppose that MNHL = v where M(s), N(s), H(s) are Dirichlet polynomials and L(s) =∑
l∼L l−s. Let b = 1 + 1

log x , T2 =
√
L. Assume that M , N and H satisfy the following conditions:

M ≪ v
53
102 , N ≫ H, N

3
4H ≪ v

53
204 , NH

1
2 ≪ v

53
204 , N

7
4H

3
2 ≪ v

53
102 ,

Then for T2 ⩽ T ⩽ T0 we have∫ 2T

T

|M(b+ it)N(b+ it)H(b+ it)L(b+ it)PK(b+ it)|dt ≪ (log x)−B .

Proof. The proof is similar to that of [[21], Lemma 3] where [[9], Theorem 2] is used. □

3. The final decomposition

Now we follow the discussion in [14] and [21]. Let pj = vtj and put

N(d) =
∑

x<pp1...pK⩽x+x
1
2

P<pi⩽2P

1, A = {n : 2−Kv < n ⩽ 2v, n repeats N(n) times},
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B = {n : v < n ⩽ 2v}, Ad = {a : a ∈ A, d | a}, P (z) =
∏
p<z

p, S(A, z) =
∑
a∈A

(a,P (z))=1

1.

Then we only need to show that S
(
A, (2v)

1
2

)
> 0. Our aim is to show that the sparser set A contains the

expected proportion of primes compared to the bigger set B, which requires us to decompose S
(
A, (2v)

1
2

)
and prove asymptotic formulas of the form

S (A, z) = v−1x
1
2+ε

 ∑
P<p⩽2P

1

p

K

(1 + o(1))S (B, z) (1)

for some parts of it, and drop the other positive parts.
Let ω(u) denote the Buchstab function determined by the following differential–difference equation{

ω(u) = 1
u , 1 ⩽ u ⩽ 2,

(uω(u))′ = ω(u− 1), u ⩾ 2.

Moreover, we have the upper bound for ω(u):

ω(u) ⩽ ω1(u) =


1
u , 1 ⩽ u < 2,
1+log(u−1)

u , 2 ⩽ u < 3,
1+log(u−1)

u + 1
u

∫ u−1

2
log(t−1)

t dt, 3 ⩽ u < 4,

0.5617, u ⩾ 4.

We shall use ω1(u) to give numerical upper bound for some sieve functions discussed below.
Before decomposing, we define the asymptotic regions T1–T3 and L as

T1(m,n) :=

{
m ⩽

53

102
, n ⩽

53

204

}
T2(m,n, h) :=

{
m ⩽

53

102
, n ⩾ h,

3

4
n+ h ⩽

53

204
, n+

1

2
h ⩽

53

204
,
7

4
n+

3

2
h ⩽

53

102

}
,

T3(m,n) :=

{
49

102
⩽ m ⩽

53

102
or

49

102
⩽ m+ n ⩽

53

102

}
,

L(m,n) := {(m,n) /∈ T3, (m,n, n) cannot be partitioned into (α, η) ∈ T1 or (α, η, γ) ∈ T2,

n ⩾
53

255
or m ⩾

1129

2448
or

1

2
m+ n ⩾

9361

24480

}
.

Lemma 3.1. We can give an asymptotic formula for∑
t1···tn

S
(
Ap1···pn

, v
2
51

)
if we can group (t1, . . . , tn) into (m,n) ∈ T1 or (m,n, h) ∈ T2.

Lemma 3.2. We can give an asymptotic formula for∑
t1···tn

S (Ap1···pn
, pn)

if we can group (t1, . . . , tn) into (m,n) ∈ T3.

By Buchstab’s identity, we have

S
(
A, (2v)

1
2

)
= S

(
A, v

2
51

)
−

∑
2
51⩽t1<

49
102

S (Ap1
, p1)−

∑
49
102⩽t1<

1
2

S (Ap1
, p1)

= S
(
A, v

2
51

)
−

∑
2
51⩽t1<

49
102

S
(
Ap1 , v

2
51

)
−

∑
49
102⩽t1<

1
2

S (Ap1 , p1)
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+
∑

2
51⩽t1<

49
102

2
51⩽t2<min(t1, 12 (1−t1))

S (Ap1p2
, p2)

= S1 − S2 − S3 + S4. (2)

By Lemma 2.1 and Lemma 2.2, we can give asymptotic formulas for S1, S2 and S3. Before estimating S4,
we first split it into three parts:

S4 =
∑

2
51⩽t1<

49
102

2
51⩽t2<min(t1, 12 (1−t1))

S (Ap1p2
, p2)

=
∑

2
51⩽t1<

49
102

2
51⩽t2<min(t1, 12 (1−t1))

(t1,t2)∈T3

S (Ap1p2
, p2) +

∑
2
51⩽t1<

49
102

2
51⩽t2<min(t1, 12 (1−t1))

(t1,t2)∈L

S (Ap1p2
, p2)

+
∑

2
51⩽t1<

49
102

2
51⩽t2<min(t1, 12 (1−t1))

(t1,t2)/∈T3

(t1,t2,t2) can be partitioned into (m,n)∈T1 or (m,n,h)∈T2

S (Ap1p2 , p2)

+
∑

2
51⩽t1<

49
102

2
51⩽t2<min(t1, 12 (1−t1))

(t1,t2)/∈T3

(t1,t2)/∈L
(t1,t2,t2) cannot be partitioned into (m,n)∈T1 or (m,n,h)∈T2

S (Ap1p2 , p2)

= S41 + S42 + S43 + S44. (3)

S41 has an asymptotic formula. For S42, we cannot decompose further but have to discard the whole
region giving the loss

∫ 49
102

2
51

∫ min(t1, 1−t1
2 )

2
51

Boole[(t1, t2) ∈ L]
ω
(

1−t1−t2
t2

)
t1t22

dt2dt1 < 0.687415. (4)

For S43 we can use Buchstab’s identity to get

S43 =
∑

2
51⩽t1<

49
102

2
51⩽t2<min(t1, 12 (1−t1))

(t1,t2)/∈T3

(t1,t2,t2) can be partitioned into (m,n)∈T1 or (m,n,h)∈T2

S (Ap1p2 , p2)

=
∑

2
51⩽t1<

49
102

2
51⩽t2<min(t1, 12 (1−t1))

(t1,t2)/∈T3

(t1,t2,t2) can be partitioned into (m,n)∈T1 or (m,n,h)∈T2

S
(
Ap1p2 , v

2
51

)

−
∑

2
51⩽t1<

49
102

2
51⩽t2<min(t1, 12 (1−t1))

(t1,t2)/∈T3

(t1,t2,t2) can be partitioned into (m,n)∈T1 or (m,n,h)∈T2
2
51⩽t3<min(t2, 12 (1−t1−t2))

(t1,t2,t3) can be partitioned into (m,n)∈T3

S (Ap1p2p3
, p3)
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−
∑

2
51⩽t1<

49
102

2
51⩽t2<min(t1, 12 (1−t1))

(t1,t2)/∈T3

(t1,t2,t2) can be partitioned into (m,n)∈T1 or (m,n,h)∈T2
2
51⩽t3<min(t2, 12 (1−t1−t2))

(t1,t2,t3) cannot be partitioned into (m,n)∈T3

S
(
Ap1p2p3

, v
2
51

)

+
∑

2
51⩽t1<

49
102

2
51⩽t2<min(t1, 12 (1−t1))

(t1,t2)/∈T3

(t1,t2,t2) can be partitioned into (m,n)∈T1 or (m,n,h)∈T2
2
51⩽t3<min(t2, 12 (1−t1−t2))

(t1,t2,t3) cannot be partitioned into (m,n)∈T3
2
51⩽t4<min(t3, 12 (1−t1−t2−t3))

(t1,t2,t3,t4) can be partitioned into (m,n)∈T3

S (Ap1p2p3p4 , p4)

+
∑

2
51⩽t1<

49
102

2
51⩽t2<min(t1, 12 (1−t1))

(t1,t2)/∈T3

(t1,t2,t2) can be partitioned into (m,n)∈T1 or (m,n,h)∈T2
2
51⩽t3<min(t2, 12 (1−t1−t2))

(t1,t2,t3) cannot be partitioned into (m,n)∈T3
2
51⩽t4<min(t3, 12 (1−t1−t2−t3))

(t1,t2,t3,t4) cannot be partitioned into (m,n)∈T3

S (Ap1p2p3p4
, p4)

= S431 − S432 − S433 + S434 + S435. (5)

We have asymptotic formulas for S431–S434. For the remaining S435, we have two ways to get more possible
savings: One way is to use Buchstab’s identity twice more for some parts if we can group (t1, t2, t3, t4, t4) into
(m,n) ∈ T1 or (m,n, h) ∈ T2. Another way is to use Buchstab’s identity in reverse to make almost–primes
visible. The details of further decompositions are similar to those in [23]. Combining the cases above we get
a loss from S43 of(∫ 49

102

2
51

∫ min(t1, 1−t1
2 )

2
51

∫ min(t2, 1−t1−t2
2 )

2
51

∫ min(t3, 1−t1−t2−t3
2 )

2
51

Boole[(t1, t2, t3, t4) ∈ U1]
ω
(

1−t1−t2−t3−t4
t4

)
t1t2t3t24

dt4dt3dt2dt1


+

(∫ 49
102

2
51

∫ min(t1, 1−t1
2 )

2
51

∫ min(t2, 1−t1−t2
2 )

2
51

∫ min(t3, 1−t1−t2−t3
2 )

2
51∫ min(t4, 1−t1−t2−t3−t4

2 )

2
51

∫ min(t5, 1−t1−t2−t3−t4−t5
2 )

2
51

Boole[(t1, t2, t3, t4, t5, t6) ∈ U2]
ω1

(
1−t1−t2−t3−t4−t5−t6

t6

)
t1t2t3t4t5t26

dt6dt5dt4dt3dt2dt1


−

(∫ 49
102

2
51

∫ min(t1, 1−t1
2 )

2
51

∫ min(t2, 1−t1−t2
2 )

2
51

∫ min(t3, 1−t1−t2−t3
2 )

2
51

∫ 1−t1−t2−t3−t4
2

t4

Boole[(t1, t2, t3, t4, t5) ∈ U3]
ω
(

1−t1−t2−t3−t4−t5
t5

)
t1t2t3t4t25

dt5dt4dt3dt2dt1


⩽ (0.161005 + 0.073993− 0.009022) = 0.225976 (6)
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where

U1(t1, t2, t3, t4) := {(t1, t2) /∈ T3, (t1, t2, t2) can be partitioned into (m,n) ∈ T1 or (m,n, h) ∈ T2,

2

53
⩽ t3 < min

(
t2,

1

2
(1− t1 − t2)

)
,

(t1, t2, t3) cannot be partitioned into (m,n) ∈ T3,

2

53
⩽ t4 < min

(
t3,

1

2
(1− t1 − t2 − t3)

)
,

(t1, t2, t3, t4) cannot be partitioned into (m,n) ∈ T3,

(t1, t2, t3, t4, t4) cannot be partitioned into (m,n) ∈ T1 or (m,n, h) ∈ T2,

2

53
⩽ t1 <

49

102
,

2

53
⩽ t2 < min

(
t1,

1

2
(1− t1)

)}
,

U2(t1, t2, t3, t4, t5, t6) := {(t1, t2) /∈ T3, (t1, t2, t2) can be partitioned into (m,n) ∈ T1 or (m,n, h) ∈ T2,

2

53
⩽ t3 < min

(
t2,

1

2
(1− t1 − t2)

)
,

(t1, t2, t3) cannot be partitioned into (m,n) ∈ T3,

2

53
⩽ t4 < min

(
t3,

1

2
(1− t1 − t2 − t3)

)
,

(t1, t2, t3, t4) cannot be partitioned into (m,n) ∈ T3,

(t1, t2, t3, t4, t4) can be partitioned into (m,n) ∈ T1 or (m,n, h) ∈ T2,

2

53
⩽ t5 < min

(
t4,

1

2
(1− t1 − t2 − t3 − t4)

)
,

(t1, t2, t3, t4, t5) cannot be partitioned into (m,n) ∈ T3,

2

53
⩽ t6 < min

(
t5,

1

2
(1− t1 − t2 − t3 − t4 − t5)

)
,

(t1, t2, t3, t4, t5, t6) cannot be partitioned into (m,n) ∈ T3,

2

53
⩽ t1 <

49

102
,

2

53
⩽ t2 < min

(
t1,

1

2
(1− t1)

)}
,

U3(t1, t2, t3, t4, t5) := {(t1, t2) /∈ T3, (t1, t2, t2) can be partitioned into (m,n) ∈ T1 or (m,n, h) ∈ T2,

2

53
⩽ t3 < min

(
t2,

1

2
(1− t1 − t2)

)
,

(t1, t2, t3) cannot be partitioned into (m,n) ∈ T3,

2

53
⩽ t4 < min

(
t3,

1

2
(1− t1 − t2 − t3)

)
,

(t1, t2, t3, t4) cannot be partitioned into (m,n) ∈ T3,

(t1, t2, t3, t4, t4) cannot be partitioned into (m,n) ∈ T1 or (m,n, h) ∈ T2,

t4 < t5 <
1

2
(1− t1 − t2 − t3 − t4),

(t1, t2, t3, t4, t5) can be partitioned into (m,n) ∈ T3,

2

53
⩽ t1 <

49

102
,

2

53
⩽ t2 < min

(
t1,

1

2
(1− t1)

)}
.

6



Next we shall decompose S44. By Buchstab’s identity, we have

S44 =
∑

2
51⩽t1<

49
102

2
51⩽t2<min(t1, 12 (1−t1))

(t1,t2)/∈T3

(t1,t2)/∈L
(t1,t2,t2) cannot be partitioned into (m,n)∈T1 or (m,n,h)∈T2

S (Ap1p2
, p2)

=
∑

2
51⩽t1<

49
102

2
51⩽t2<min(t1, 12 (1−t1))

(t1,t2)/∈T3

(t1,t2)/∈L
(t1,t2,t2) cannot be partitioned into (m,n)∈T1 or (m,n,h)∈T2

S
(
Ap1p2 , v

2
51

)

−
∑

2
51⩽t1<

49
102

2
51⩽t2<min(t1, 12 (1−t1))

(t1,t2)/∈T3

(t1,t2)/∈L
(t1,t2,t2) cannot be partitioned into (m,n)∈T1 or (m,n,h)∈T2

2
51⩽t3<min(t2, 12 (1−t1−t2))

S (Ap1p2p3
, p3)

=
∑

2
51⩽t1<

49
102

2
51⩽t2<min(t1, 12 (1−t1))

(t1,t2)/∈T3

(t1,t2)/∈L
(t1,t2,t2) cannot be partitioned into (m,n)∈T1 or (m,n,h)∈T2

S
(
Ap1p2 , v

2
51

)

−
∑

2
51⩽t1<

49
102

2
51⩽t2<min(t1, 12 (1−t1))

(t1,t2)/∈T3

(t1,t2)/∈L
(t1,t2,t2) cannot be partitioned into (m,n)∈T1 or (m,n,h)∈T2

2
51⩽t3<min(t2, 12 (1−t1−t2))

(t1,t2,t3) can be partitioned into (m,n)∈T1 or (m,n,h)∈T2

S (Ap1p2p3 , p3)

−
∑

2
51⩽t1<

49
102

2
51⩽t2<min(t1, 12 (1−t1))

(t1,t2)/∈T3

(t1,t2)/∈L
(t1,t2,t2) cannot be partitioned into (m,n)∈T1 or (m,n,h)∈T2

2
51⩽t3<min(t2, 12 (1−t1−t2))

(t1,t2,t3) cannot be partitioned into (m,n)∈T1 or (m,n,h)∈T2

S (Ap1p2p3
, p3)

= S441 − S442 − S443. (7)

We have an asymptotic formula for S441. For S442 we can use the same methods as above (i.e. using
Buchstab’s identity twice more and making almost–primes visible) to get a loss of(∫ 49

102

2
51

∫ min(t1, 1−t1
2 )

2
51

∫ min(t2, 1−t1−t2
2 )

2
51

∫ min(t3, 1−t1−t2−t3
2 )

2
51

Boole[(t1, t2, t3, t4) ∈ U4]
ω
(

1−t1−t2−t3−t4
t4

)
t1t2t3t24

dt4dt3dt2dt1


−

(∫ 49
102

2
51

∫ min(t1, 1−t1
2 )

2
51

∫ min(t2, 1−t1−t2
2 )

2
51

∫ min(t3, 1−t1−t2−t3
2 )

2
51

∫ 1−t1−t2−t3−t4
2

t4

7



Boole[(t1, t2, t3, t4, t5) ∈ U5]
ω
(

1−t1−t2−t3−t4−t5
t5

)
t1t2t3t4t25

dt5dt4dt3dt2dt1


⩽ (0.038404− 0.005445) = 0.032959 (8)

where

U4(t1, t2, t3, t4) := {(t1, t2) /∈ T3, (t1, t2, t2) cannot be partitioned into (m,n) ∈ T1 or (m,n, h) ∈ T2,

2

53
⩽ t3 < min

(
t2,

1

2
(1− t1 − t2)

)
,

(t1, t2, t3) can be partitioned into (m,n) ∈ T1 or (m,n, h) ∈ T2,

(t1, t2, t3) cannot be partitioned into (m,n) ∈ T3,

2

53
⩽ t4 < min

(
t3,

1

2
(1− t1 − t2 − t3)

)
,

(t1, t2, t3, t4) cannot be partitioned into (m,n) ∈ T3,

2

53
⩽ t1 <

49

102
,

2

53
⩽ t2 < min

(
t1,

1

2
(1− t1)

)}
,

U5(t1, t2, t3, t4, t5) := {(t1, t2) /∈ T3, (t1, t2, t2) cannot be partitioned into (m,n) ∈ T1 or (m,n, h) ∈ T2,

2

53
⩽ t3 < min

(
t2,

1

2
(1− t1 − t2)

)
,

(t1, t2, t3) can be partitioned into (m,n) ∈ T1 or (m,n, h) ∈ T2,

(t1, t2, t3) cannot be partitioned into (m,n) ∈ T3,

2

53
⩽ t4 < min

(
t3,

1

2
(1− t1 − t2 − t3)

)
,

(t1, t2, t3, t4) cannot be partitioned into (m,n) ∈ T3,

t4 < t5 <
1

2
(1− t1 − t2 − t3 − t4),

(t1, t2, t3, t4, t5) can be partitioned into (m,n) ∈ T3,

2

53
⩽ t1 <

49

102
,

2

53
⩽ t2 < min

(
t1,

1

2
(1− t1)

)}
.

For S443 we can perform a role–reversal to get a small saving. For the definition of a role–reversal one can see
[4] or [[11], Chapter 5], and we refer the readers to [15], [20] and [23] for more applications of role–reversals.
In this way we have

S443 =
∑

2
51⩽t1<

49
102

2
51⩽t2<min(t1, 12 (1−t1))

(t1,t2)/∈T3

(t1,t2)/∈L
(t1,t2,t2) cannot be partitioned into (m,n)∈T1 or (m,n,h)∈T2

2
51⩽t3<min(t2, 12 (1−t1−t2))

(t1,t2,t3) cannot be partitioned into (m,n)∈T1 or (m,n,h)∈T2

S (Ap1p2p3
, p3)

=
∑

2
51⩽t1<

49
102

2
51⩽t2<min(t1, 12 (1−t1))

(t1,t2)/∈T3

(t1,t2)/∈L
(t1,t2,t2) cannot be partitioned into (m,n)∈T1 or (m,n,h)∈T2

2
51⩽t3<min(t2, 12 (1−t1−t2))

(t1,t2,t3) cannot be partitioned into (m,n)∈T1 or (m,n,h)∈T2

S

(
Aβp2p3

,

(
2v

βp2p3

) 1
2

)

8



=
∑

2
51⩽t1<

49
102

2
51⩽t2<min(t1, 12 (1−t1))

(t1,t2)/∈T3

(t1,t2)/∈L
(t1,t2,t2) cannot be partitioned into (m,n)∈T1 or (m,n,h)∈T2

2
51⩽t3<min(t2, 12 (1−t1−t2))

(t1,t2,t3) cannot be partitioned into (m,n)∈T1 or (m,n,h)∈T2

S
(
Aβp2p3

, v
2
51

)

−
∑

2
51⩽t1<

49
102

2
51⩽t2<min(t1, 12 (1−t1))

(t1,t2)/∈T3

(t1,t2)/∈L
(t1,t2,t2) cannot be partitioned into (m,n)∈T1 or (m,n,h)∈T2

2
51⩽t3<min(t2, 12 (1−t1−t2))

(t1,t2,t3) cannot be partitioned into (m,n)∈T1 or (m,n,h)∈T2
2
51⩽t4<

1
2 t1

S (Aβp2p3p4 , p4) ,

where β ∼ v1−t1−t2−t3 and (β, P (p3)) = 1. Again, we can use Buchstab’s identity in reverse to gain a small
saving on the last term. Altogether we get a loss from S443 of(∫ 49

102

2
51

∫ min(t1, 1−t1
2 )

2
51

∫ min(t2, 1−t1−t2
2 )

2
51

∫ 1
2 t1

2
51

Boole[(t1, t2, t3, t4) ∈ U6]
ω
(

t1−t4
t4

)
ω
(

1−t1−t2−t3
t3

)
t2t23t

2
4

dt4dt3dt2dt1


−

(∫ 49
102

2
51

∫ min(t1, 1−t1
2 )

2
51

∫ min(t2, 1−t1−t2
2 )

2
51

∫ 1
2 t1

2
51

∫ t1−t4
2

t4

Boole[(t1, t2, t3, t4, t5) ∈ U7]
ω
(

t1−t4−t5
t5

)
ω
(

1−t1−t2−t3
t3

)
t2t23t4t

2
5

dt5dt4dt3dt2dt1


⩽ (0.046566− 0.007144) = 0.039422 (9)

where

U6(t1, t2, t3, t4) := {(t1, t2) /∈ T3, (t1, t2, t2) cannot be partitioned into (m,n) ∈ T1 or (m,n, h) ∈ T2,

2

53
⩽ t3 < min

(
t2,

1

2
(1− t1 − t2)

)
,

(t1, t2, t3) cannot be partitioned into (m,n) ∈ T1 or (m,n, h) ∈ T2,

(t1, t2, t3) cannot be partitioned into (m,n) ∈ T3,

2

53
⩽ t4 <

1

2
t1,

(1− t1 − t2 − t3, t2, t3, t4) cannot be partitioned into (m,n) ∈ T3,

2

53
⩽ t1 <

49

102
,

2

53
⩽ t2 < min

(
t1,

1

2
(1− t1)

)}
,

U7(t1, t2, t3, t4, t5) := {(t1, t2) /∈ T3, (t1, t2, t2) cannot be partitioned into (m,n) ∈ T1 or (m,n, h) ∈ T2,

2

53
⩽ t3 < min

(
t2,

1

2
(1− t1 − t2)

)
,

(t1, t2, t3) can be partitioned into (m,n) ∈ T1 or (m,n, h) ∈ T2,

(t1, t2, t3) cannot be partitioned into (m,n) ∈ T3,

2

53
⩽ t4 <

1

2
t1,

9



(1− t1 − t2 − t3, t2, t3, t4) cannot be partitioned into (m,n) ∈ T3,

t4 < t5 <
1

2
(t1 − t4),

(1− t1 − t2 − t3, t2, t3, t4, t5) can be partitioned into (m,n) ∈ T3,

2

53
⩽ t1 <

49

102
,

2

53
⩽ t2 < min

(
t1,

1

2
(1− t1)

)}
.

Finally, by (2)–(9), the total loss is less than

0.687415 + 0.225976 + 0.032959 + 0.039422 < 0.986 < 1

and the proof of Theorem 1.1 is completed.
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