ON THE GENERALIZED DIRICHLET DIVISOR PROBLEM

RUNBO LI

ABSTRACT. Using more advanced results on the growth exponent for Riemann zeta–function and accurate numerical estimations, we obtain better upper bounds for α_k (9 $\leq k \leq 20$) on the generalized Dirichlet divisor problem. This gives a minor improvement upon the recent result of Trudgian and Yang.

CONTENTS

1.	Introduction	1
2.	Growth exponents for Riemann zeta–function	2
3.	Ivić large value theorem	2
4.	Proof of Theorem 1.2	3
Acl	nowledgements	3
Ref	erences	3

1. INTRODUCTION

Let $k \ge 2$ denotes an integer and $d_k(n)$ is the divisor function that represents the number of ways n may be written as a product of exactly k factors. The generalized Dirichlet divisor problem consists of the estimation of the function

$$\Delta_k(x) = \sum_{n \leqslant x} d_k(n) - x P_{k-1}(\log x), \tag{1}$$

where P_{k-1} is an explicit polynomial of degree k-1. Clearly we have $\Delta_k(x) = o(x)$. We then define α_k as the least exponent for which

$$\Delta_k(x) \ll x^{\alpha_k + \varepsilon}.\tag{2}$$

In 1916, Hardy [2] first proved a lower bound that $\alpha_k \ge \frac{1}{2} - \frac{1}{2k}$ for all $k \ge 2$. The generalized Dirichlet divisor problem conjecture states that $\alpha_k = \frac{1}{2} - \frac{1}{2k}$ holds for all $k \ge 2$, and this conjecture implies the Lindelöf hypothesis. Now, the best upper bounds for α_k $(k \le 8)$ are

$$\alpha_2 \leqslant 0.3144831759741, \qquad \alpha_3 \leqslant \frac{43}{96}, \qquad \alpha_k \leqslant \frac{3k-4}{4k} \text{ for } 4 \leqslant k \leqslant 8$$

by Li and Yang [8], Kolesnik [7] and Heath–Brown [3] (and Ivić [5]) respectively. Ivić also gave upper bounds with $k \ge 9$ in his book. For results with large k, one can see works of Heath–Brown [4] and Bellotti and Yang [1]. We also refer the readers to the blueprint of the new project ANTEDB organized by Tao, Trudgian and Yang.

In 1989, Ivić and Ouellet [6] refined the technique used in and gave better bounds for α_k with $k \ge 9$. In [5], Ivić connected this problem with the function $m(\sigma)$ defined as follows: For any fixed $\frac{1}{2} < \sigma < 1$ we define $m(\sigma)$ as the supremum of all numbers $m \ge 4$ such that

$$\int_{1}^{T} \left| \zeta(\sigma + it) \right|^{m} dt \ll T^{1+\varepsilon}.$$
(3)

²⁰²⁰ Mathematics Subject Classification. 11M06, 11N37, 11N56.

Key words and phrases. Dirichlet divisor problem, Riemann zeta-function, Large value theorem.

In order to obtain good bounds for α_k , one need to get lower bounds for $m(\sigma)$. Ivić and Ouellet [6] used a large value theorem and growth exponents for Riemann zeta-function to bound $m(\sigma)$. Specially, for $10 \leq k \leq 20$ they got

$\alpha_{10} \leqslant 0.675,$	$\alpha_{11} \leqslant 0.6957,$	$\alpha_{12} \leqslant 0.7130,$	$\alpha_{13} \leqslant 0.7306,$
$\alpha_{14} \leqslant 0.7461,$	$\alpha_{15} \leqslant 0.75851,$	$\alpha_{16} \leqslant 0.7691,$	$\alpha_{17} \leqslant 0.7785,$
$\alpha_{18} \leqslant 0.7868,$	$\alpha_{19} \leqslant 0.7942,$	$\alpha_{20} \leqslant 0.8009.$	

In 2024, Trudgian and Yang [9] mentioned a series of new bounds for α_k . They combined the method of Ivić and Ouellet [6] with their new growth exponents for Riemann zeta-function to obtain those bounds.

Theorem 1.1. (/[9], Theorem 2.9]). We have

$\alpha_9 \leqslant 0.64720,$	$\alpha_{10} \leqslant 0.67173,$	$\alpha_{11} \leqslant 0.69156,$	$\alpha_{12} \leqslant 0.70818,$	
$\alpha_{13} \leqslant 0.72350,$	$\alpha_{14} \leqslant 0.73696,$	$\alpha_{15} \leqslant 0.74886,$	$\alpha_{16} \leqslant 0.75952,$	
$\alpha_{17} \leqslant 0.76920,$	$\alpha_{18} \leqslant 0.77792,$	$\alpha_{19} \leqslant 0.78581,$	$\alpha_{20} \leqslant 0.79297,$	$\alpha_{21} \leqslant 0.79951.$

In this paper, we use the essentially same methods to give a very minor improvement on their results.

Theorem 1.2. We have

$\alpha_9 \leqslant 0.638889,$	$\alpha_{10} \leqslant 0.663329,$	$\alpha_{11} \leqslant 0.684349,$	$\alpha_{12} \leqslant 0.701768$
$\alpha_{13} \leqslant 0.717611,$	$\alpha_{14} \leqslant 0.732262,$	$\alpha_{15} \leqslant 0.745070,$	$\alpha_{16} \leqslant 0.756380$
$\alpha_{17} \leqslant 0.766588,$	$\alpha_{18} \leqslant 0.775721,$	$\alpha_{19} \leqslant 0.783939,$	$\alpha_{20} \leqslant 0.791374.$

2. Growth exponents for Riemann zeta-function

In this section we list the new growth exponents for Riemann zeta–function proved by Trudgian and Yang [9], which is the most powerful and important input in the proof of Theorem 1.2 (and also Theorem 1.1).

Lemma 2.1. ([[9], Theorem 2.4]). We have

$$\mu(\sigma) \leqslant \begin{cases} \frac{31}{36} - \frac{3}{7}\sigma, & \frac{1}{2} \leqslant \sigma \leqslant \frac{88225}{153852}, \\ \frac{220633}{620612} - \frac{62831}{155153}\sigma, & \frac{88225}{153852} \leqslant \sigma \leqslant \frac{521}{796}, \\ \frac{1333}{3825} - \frac{1508}{3825}\sigma, & \frac{521}{796} \leqslant \sigma \leqslant \frac{53141}{76066}, \\ \frac{405}{1202} - \frac{227}{601}\sigma, & \frac{53141}{76066} \leqslant \sigma \leqslant \frac{454}{641}, \\ \frac{779}{2590} - \frac{423}{1295}\sigma, & \frac{454}{641} \leqslant \sigma \leqslant \frac{3473692}{4856993}, \\ \frac{1610593}{5622410} - \frac{861996}{2811205}\sigma, & \frac{3473692}{69128} \leqslant \sigma \leqslant \frac{52209}{1736}, \\ \frac{157319}{560830} - \frac{251324}{251324}\sigma, & \frac{52229}{69128} \leqslant \sigma \leqslant \frac{1389}{1736}, \\ \frac{2841}{10316} - \frac{754}{2579}\sigma, & \frac{1389}{7136} \leqslant \sigma \leqslant \frac{587779}{702192}, \\ \frac{1691}{6554} - \frac{897}{3277}\sigma, & \frac{587779}{702192} \leqslant \sigma \leqslant \frac{7441}{8695}, \\ \frac{29}{130} - \frac{3}{13}\sigma, & \frac{7441}{8695} \leqslant \sigma \leqslant \frac{277}{300}. \end{cases}$$

3. IVIĆ LARGE VALUE THEOREM

Now we provide the large value theorem used by Ivić and Ouellet [6].

Lemma 3.1. (, Lemma 1). Let t_1, \ldots, t_R be real numbers such that $T \leq t_r \leq 2T$ for $r = 1, \ldots, R$ and $|t_r - t_s| \geq (\log T)^4$ for $1 \leq r \neq s \leq R$. If

$$T^{\varepsilon} < V \leqslant \left| \sum_{m \sim M} a_m m^{-\sigma - it_r} \right|$$

where $a_m \ll M^{\varepsilon}$ for $m \sim M$, $1 \ll M \ll T^C$, then

$$R \ll T^{\varepsilon} \left(M^{2-2\sigma} V^{-2} + T V^{-f(\sigma)} \right),$$

where

$$f(\sigma) = \begin{cases} \frac{2}{3-4\sigma}, & \frac{1}{2} < \sigma \leqslant \frac{2}{3}, \\ \frac{10}{7-8\sigma}, & \frac{2}{3} \leqslant \sigma \leqslant \frac{11}{14}, \\ \frac{34}{15-16\sigma}, & \frac{11}{14} \leqslant \sigma \leqslant \frac{13}{15}, \\ \frac{98}{31-32\sigma}, & \frac{13}{15} \leqslant \sigma \leqslant \frac{57}{62}, \\ \frac{5}{1-\sigma}, & \frac{57}{62} \leqslant \sigma \leqslant 1-\varepsilon. \end{cases}$$

4. Proof of Theorem 1.2

We shall use the method of Ivić and Ouellet [6] to prove Theorem 1.2. It was shown in [, Chapter 8] that to obtain bounds for $m(\sigma)$ it suffices to obtain bounds of the form

$$R \ll T^{1+\varepsilon} V^{-m(\sigma)},\tag{4}$$

where R is the number of points $t_r(1 \leq r \leq R)$ such that $|t_r| \leq T$, $|t_r - t_s| \geq (\log T)^4$ for $1 \leq r \neq s \leq R$ and $|\zeta(\sigma + it_r)| \geq V > 0$ for any given V. Moreover, by [, (8.97)] we know that

$$R \ll T^{\varepsilon} \left(TV^{-2f(\sigma)} + T^{\frac{4-4\sigma}{1+2\sigma}} V^{\frac{-12}{1+2\sigma}} + T^{\frac{4(1-\sigma)(\kappa+\lambda)}{((2-4\lambda)\sigma-1+2\kappa-2\lambda)}} V^{\frac{-4(1+2\kappa+2\lambda)}{((2-4\lambda)\sigma-1+2\kappa-2\lambda)}} \right),\tag{5}$$

where (κ, λ) is an exponent pair. We shall use $(\kappa, \lambda) = \left(\frac{3}{40}, \frac{31}{40}\right)$ in the rest of our paper for the sake of convenience.

Now, for every $\frac{1}{2} \leq \sigma \leq \frac{277}{300}$ we define $c(\sigma)$ is the piecewise function given by Lemma 2.1. Clearly $c(\sigma)$ is an upper bound for $\mu(\sigma)$. By () and the definitions of $f(\sigma)$ and $c(\sigma)$, we can easily calculate the corresponding $m(\sigma)$ for some σ between $\frac{1}{2}$ and $\frac{277}{300}$. Numerical calculation gives that

$$\begin{array}{ll} m(0.638889) > 9, & m(0.663329) > 10, & m(0.684349) > 11, & m(0.701768) > 12, \\ m(0.717611) > 13, & m(0.732262) > 14, & m(0.745070) > 15, & m(0.756380) > 16, \\ m(0.766588) > 17, & m(0.775721) > 18, & m(0.783939) > 19, & m(0.791374) > 20 \end{array}$$

and Theorem 1.2 is now proved.

Acknowledgements

The author would like to thank the Analytic Number Theory Exponent Database (ANTEDB) project.

References

- [1] C. Bellotti and A. Yang. On the generalised Dirichlet divisor problem. Bull. London Math. Soc., 56(5):1859–1878, 2024.
- [2] G. H. Hardy. On Dirichlet's divisor problem. Proc. London Math. Soc., 15(2):1–25, 1916.
- [3] D. R. Heath-Brown. Mean values of the zeta-function and divisor problems. In Recent progress in analytic number theory, Vol. 1 (Durham, 1979), pages 115–119. Academic Press, London–New York, 1981.
- [4] D. R. Heath-Brown. A new k-th derivative estimate for exponential sums via Vinogradov's mean value. Proc. Steklov Inst. Math., 296(1):88–103, 2017.
- [5] A. Ivić. The Riemann zeta-function. Dover Publications, Inc., Mineola, NY, 2003.
- [6] A. Ivić and M. Ouellet. Some new estimates in the Dirichlet divisor problem. Acta Arith., 52(3):241–253, 1989.
- [7] G. Kolesnik. On the estimation of multiple exponential sums. In Recent progress in analytic number theory, Vol. 1 (Durham, 1979), pages 231–246. Academic Press, London–New York, 1981.
- [8] X. Li and X. Yang. An improvement on Gauss's Circle Problem and Dirichlet's Divisor Problem. arXiv e-prints, page arXiv:2308.14859v2, 2023.
- [9] T. S. Trudgian and A. Yang. Toward optimal exponent pairs. arXiv e-prints, page arXiv:2306.05599v3, 2024.

INTERNATIONAL CURRICULUM CENTER, THE HIGH SCHOOL AFFILIATED TO RENMIN UNIVERSITY OF CHINA, BEIJING, CHINA *Email address:* carey.lee.04330gmail.com