ON THE GENERALIZED DIRICHLET DIVISOR PROBLEM

RUNBO LI

ABSTRACT. Using more advanced results on the growth exponent for Riemann zeta—function and accurate
numerical estimations, we obtain better upper bounds for o) (9 < k < 20) on the generalized Dirichlet
divisor problem. This gives a minor improvement upon the recent result of Trudgian and Yang.
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1. INTRODUCTION

Let k > 2 denotes an integer and di(n) is the divisor function that represents the number of ways n
may be written as a product of exactly k factors. The generalized Dirichlet divisor problem consists of the
estimation of the function

Ap(x) =) dp(n) — 2Pp_s (logz), (1)
nLx
where Pj_; is an explicit polynomial of degree k — 1. Clearly we have Ap(z) = o(x). We then define oy, as
the least exponent for which

Ag(x) < zorte, (2)

In 1916, Hardy [2] first proved a lower bound that «y > % — i for all £ > 2. The generalized Dirichlet

divisor problem conjecture states that oy = % — ﬁ holds for all £ > 2, and this conjecture implies the

Lindeldf hypothesis. Now, the best upper bounds for oy, (k < 8) are
43 < 3k—4
96" S Tk

by Li and Yang [8], Kolesnik [7] and Heath-Brown [3] (and Ivié [5]) respectively. Ivié also gave upper bounds
with & > 9 in his book. For results with large k, one can see works of Heath-Brown [4] and Bellotti and
Yang [1]. We also refer the readers to the blueprint of the new project ANTEDB organized by Tao, Trudgian
and Yang.

In 1989, Ivi¢ and Ouellet [6] refined the technique used in and gave better bounds for «y with k& > 9.
In [5], Ivi¢ connected this problem with the function m(c) defined as follows: For any fixed 3 < o < 1 we
define m(o) as the supremum of all numbers m > 4 such that

o < 0.3144831759741, a3 < ford <k <8

T
/1 IC(o +it)|" dt < T e, (3)
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In order to obtain good bounds for ay, one need to get lower bounds for m(c). Ivié and Ouellet [6] used
a large value theorem and growth exponents for Riemann zeta—function to bound m(o). Specially, for
10 < k < 20 they got
a10 < 0.675, a11 < 0.6957, a2 < 0.7130, 13 <
a14 < 0.7461, a5 < 0.75851, a1 < 0.7691, a17 <
a1 < 0.7868, 19 < 0.7942, a9 < 0.8009.

0.7306,
0.7785,

In 2024, Trudgian and Yang [9] mentioned a series of new bounds for ay. They combined the method of
Ivié and Ouellet [6] with their new growth exponents for Riemann zeta—function to obtain those bounds.

Theorem 1.1. (/|9], Theorem 2.9]). We have

S <0. 64720 0410 S 0. 67173 11
< 0.72350, aq4 < 0.73696, a1s
aq7 S 076920, 18 S 0777927 Q19 § 078581, Q20

0.69156,  aio < 0.70818,
0.74886,  aug < 0.75952,
<0.79297,  am < 0.79951.

<
<

In this paper, we use the essentially same methods to give a very minor improvement on their results.

Theorem 1.2. We have

< 0.638889, aqo < 0.663329, o1 < 0.684349, a2 < 0.701768,
13 < 0.717611, a1g < 0.732262, a5 < 0.745070, a6 < 0.756380,
a7 < 0.766588, a8 < 0.775721, o9 < 0.783939, oo < 0.791374.

2. GROWTH EXPONENTS FOR RIEMANN ZETA—FUNCTION

In this section we list the new growth exponents for Riemann zeta—function proved by Trudgian and Yang
[9], which is the most powerful and important input in the proof of Theorem 1.2 (and also Theorem 1.1).

Lemma 2.1. ([[9], Theorem 2.4]). We have

31 3 1 88225
36 7% 2 SO S 538520
220633 62831 88225 - - 521
620612 155153 153852 N 9 X 796>
1333 _ 1508 521 o . o 53141
3825 38250 796 N0 X 760667
405 _ 227 53141 o 454
1202 — 601 76066 X 0 N G4t
770 _ 423 o 454 - 3473692
(o) < { 2090 1295 641 N7 X 48569903
S 1610593 861996 3473692 . o 52209
5622410 ~ 281120577 4856993 = 7 N G9128>
157319 _ 251324 52209 1389
560830  8412457» o128 S 0 S Tr3g:
2841 _ 754 1389 o 587779
10316 25799 1736 S 7 X 7021020
1691 _ 890 B8TTTY o o o TAdL
6554 — 32779» 702192 S 7 X 86957
29 3 7441 277
130 139 8605 S 0 S 500

3. Ivi¢ LARGE VALUE THEOREM
Now we provide the large value theorem used by Ivi¢ and Ouellet [6].

Lemma 3.1. (, Lemma 1). Let ty,...,tgr be real numbers such that T < t. < 2T forr =1,...,R and
[t —ts| = (logT)* for 1<r#s< R. If

T <V <

§ ammfafzt,,,

mn~ M

where a,, < M form ~ M, 1< M < T, then

R<T® (M2*2"V*2 + TV*f<”>) ,
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where

3—2407 %<‘7<%7
7E(E)5cr’ %go—g%’
flo) =19 256> 11 <O< 1
3132207 % oS %7
130’ %gaél—s.

4. PROOF OF THEOREM 1.2

We shall use the method of Ivi¢ and Ouellet [6] to prove Theorem 1.2. It was shown in [, Chapter 8] that
to obtain bounds for m(o) it suffices to obtain bounds of the form

R < Ttrey—mio), (4)

where R is the number of points ,.(1 < r < R) such that |t,| < T, |t, —ts| > (logT)* for 1 <r # s < R and
|¢(o +it,)] =V > 0 for any given V. Moreover, by [, (8.97)] we know that

4(1—0)(k+A) —4(142k42X) )
)

R« T¢ (TV*Zf(U) + T% Vﬂ_ilzi + T @=aXNo—1F2r—2X) |/ ((@Z=4X)o —1+2r—2X) (5)
3 31
K

where (k, ) is an exponent pair. We shall use (k,A\) = (4—0 —0) in the rest of our paper for the sake of

convenience.
Now, for every % <o < % we define ¢(0) is the piecewise function given by Lemma 2.1. Clearly ¢(o) is an
upper bound for (o). By () and the definitions of f(o) and ¢(c), we can easily calculate the corresponding

m(c) for some o between % and 2. Numerical calculation gives that

m(0.638889) > 9,  m(0.663329) > 10,  m(0.684349) > 11,  m(0.701768) > 12,
m(0.717611) > 13, m(0.732262) > 14,  m(0.745070) > 15,  m(0.756380) > 16,
m(0.766588) > 17, m(0.775721) > 18,  m(0.783939) > 19,  m(0.791374) > 20

and Theorem 1.2 is now proved.

ACKNOWLEDGEMENTS

The author would like to thank the Analytic Number Theory Exponent Database (ANTEDB) project.

REFERENCES

[1] C. Bellotti and A. Yang. On the generalised Dirichlet divisor problem. Bull. London Math. Soc., 56(5):1859-1878, 2024.

[2] G. H. Hardy. On Dirichlet’s divisor problem. Proc. London Math. Soc., 15(2):1-25, 1916.

[3] D. R. Heath-Brown. Mean values of the zeta—function and divisor problems. In Recent progress in analytic number theory,
Vol. 1 (Durham, 1979), pages 115-119. Academic Press, London-New York, 1981.

[4] D. R. Heath-Brown. A new k—th derivative estimate for exponential sums via Vinogradov’s mean value. Proc. Steklov Inst.
Maith., 296(1):88-103, 2017.

[5] A. Ivié. The Riemann zeta—function. Dover Publications, Inc., Mineola, NY, 2003.

[6] A. Ivi¢ and M. Ouellet. Some new estimates in the Dirichlet divisor problem. Acta Arith., 52(3):241-253, 1989.

[7] G. Kolesnik. On the estimation of multiple exponential sums. In Recent progress in analytic number theory, Vol. 1 (Durham,
1979), pages 231-246. Academic Press, London-New York, 1981.

[8] X. Li and X. Yang. An improvement on Gauss’s Circle Problem and Dirichlet’s Divisor Problem. arXiv e-prints, page
arXiv:2308.14859v2, 2023.

[9] T. S. Trudgian and A. Yang. Toward optimal exponent pairs. arXiv e-prints, page arXiv:2306.05599v3, 2024.

INTERNATIONAL CURRICULUM CENTER, THE HIGH SCHOOL AFFILIATED TO RENMIN UNIVERSITY OF CHINA, BELJING, CHINA
Email address: carey.lee.04330gmail.com



	1. Introduction
	2. Growth exponents for Riemann zeta–function
	3. Ivić large value theorem
	4. Proof of Theorem 1.2
	Acknowledgements
	References

