
ON THE GENERALIZED DIRICHLET DIVISOR PROBLEM

RUNBO LI

Abstract. Using more advanced results on the growth exponent for Riemann zeta–function and accurate
numerical estimations, we obtain better upper bounds for αk (9 ⩽ k ⩽ 20) on the generalized Dirichlet

divisor problem. This gives a minor improvement upon the recent result of Trudgian and Yang.
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1. Introduction

Let k ⩾ 2 denotes an integer and dk(n) is the divisor function that represents the number of ways n
may be written as a product of exactly k factors. The generalized Dirichlet divisor problem consists of the
estimation of the function

∆k(x) =
∑
n⩽x

dk(n)− xPk−1(log x), (1)

where Pk−1 is an explicit polynomial of degree k − 1. Clearly we have ∆k(x) = o(x). We then define αk as
the least exponent for which

∆k(x) ≪ xαk+ε. (2)

In 1916, Hardy [2] first proved a lower bound that αk ⩾ 1
2 − 1

2k for all k ⩾ 2. The generalized Dirichlet

divisor problem conjecture states that αk = 1
2 − 1

2k holds for all k ⩾ 2, and this conjecture implies the
Lindelöf hypothesis. Now, the best upper bounds for αk (k ⩽ 8) are

α2 ⩽ 0.3144831759741, α3 ⩽
43

96
, αk ⩽

3k − 4

4k
for 4 ⩽ k ⩽ 8

by Li and Yang [8], Kolesnik [7] and Heath–Brown [3] (and Ivić [5]) respectively. Ivić also gave upper bounds
with k ⩾ 9 in his book. For results with large k, one can see works of Heath–Brown [4] and Bellotti and
Yang [1]. We also refer the readers to the blueprint of the new project ANTEDB organized by Tao, Trudgian
and Yang.

In 1989, Ivić and Ouellet [6] refined the technique used in and gave better bounds for αk with k ⩾ 9.
In [5], Ivić connected this problem with the function m(σ) defined as follows: For any fixed 1

2 < σ < 1 we
define m(σ) as the supremum of all numbers m ⩾ 4 such that∫ T

1

|ζ(σ + it)|m dt ≪ T 1+ε. (3)
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In order to obtain good bounds for αk, one need to get lower bounds for m(σ). Ivić and Ouellet [6] used
a large value theorem and growth exponents for Riemann zeta–function to bound m(σ). Specially, for
10 ⩽ k ⩽ 20 they got

α10 ⩽ 0.675, α11 ⩽ 0.6957, α12 ⩽ 0.7130, α13 ⩽ 0.7306,

α14 ⩽ 0.7461, α15 ⩽ 0.75851, α16 ⩽ 0.7691, α17 ⩽ 0.7785,

α18 ⩽ 0.7868, α19 ⩽ 0.7942, α20 ⩽ 0.8009.

In 2024, Trudgian and Yang [9] mentioned a series of new bounds for αk. They combined the method of
Ivić and Ouellet [6] with their new growth exponents for Riemann zeta–function to obtain those bounds.

Theorem 1.1. ([[9], Theorem 2.9]). We have

α9 ⩽ 0.64720, α10 ⩽ 0.67173, α11 ⩽ 0.69156, α12 ⩽ 0.70818,

α13 ⩽ 0.72350, α14 ⩽ 0.73696, α15 ⩽ 0.74886, α16 ⩽ 0.75952,

α17 ⩽ 0.76920, α18 ⩽ 0.77792, α19 ⩽ 0.78581, α20 ⩽ 0.79297, α21 ⩽ 0.79951.

In this paper, we use the essentially same methods to give a very minor improvement on their results.

Theorem 1.2. We have

α9 ⩽ 0.638889, α10 ⩽ 0.663329, α11 ⩽ 0.684349, α12 ⩽ 0.701768,

α13 ⩽ 0.717611, α14 ⩽ 0.732262, α15 ⩽ 0.745070, α16 ⩽ 0.756380,

α17 ⩽ 0.766588, α18 ⩽ 0.775721, α19 ⩽ 0.783939, α20 ⩽ 0.791374.

2. Growth exponents for Riemann zeta–function

In this section we list the new growth exponents for Riemann zeta–function proved by Trudgian and Yang
[9], which is the most powerful and important input in the proof of Theorem 1.2 (and also Theorem 1.1).

Lemma 2.1. ([[9], Theorem 2.4]). We have

µ(σ) ⩽



31
36 − 3

7σ,
1
2 ⩽ σ ⩽ 88225

153852 ,
220633
620612 − 62831

155153σ,
88225
153852 ⩽ σ ⩽ 521

796 ,
1333
3825 − 1508

3825σ,
521
796 ⩽ σ ⩽ 53141

76066 ,
405
1202 − 227

601σ,
53141
76066 ⩽ σ ⩽ 454

641 ,
779
2590 − 423

1295σ,
454
641 ⩽ σ ⩽ 3473692

4856993 ,
1610593
5622410 − 861996

2811205σ,
3473692
4856993 ⩽ σ ⩽ 52209

69128 ,
157319
560830 − 251324

841245σ,
52209
69128 ⩽ σ ⩽ 1389

1736 ,
2841
10316 − 754

2579σ,
1389
1736 ⩽ σ ⩽ 587779

702192 ,
1691
6554 − 890

3277σ,
587779
702192 ⩽ σ ⩽ 7441

8695 ,
29
130 − 3

13σ,
7441
8695 ⩽ σ ⩽ 277

300 .

3. Ivić large value theorem

Now we provide the large value theorem used by Ivić and Ouellet [6].

Lemma 3.1. (, Lemma 1). Let t1, . . . , tR be real numbers such that T ⩽ tr ⩽ 2T for r = 1, . . . , R and
|tr − ts| ⩾ (log T )4 for 1 ⩽ r ̸= s ⩽ R. If

T ε < V ⩽

∣∣∣∣∣ ∑
m∼M

amm−σ−itr

∣∣∣∣∣
where am ≪ Mε for m ∼ M , 1 ≪ M ≪ TC , then

R ≪ T ε
(
M2−2σV −2 + TV −f(σ)

)
,
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where

f(σ) =



2
3−4σ ,

1
2 < σ ⩽ 2

3 ,
10

7−8σ ,
2
3 ⩽ σ ⩽ 11

14 ,
34

15−16σ ,
11
14 ⩽ σ ⩽ 13

15 ,
98

31−32σ ,
13
15 ⩽ σ ⩽ 57

62 ,
5

1−σ ,
57
62 ⩽ σ ⩽ 1− ε.

4. Proof of Theorem 1.2

We shall use the method of Ivić and Ouellet [6] to prove Theorem 1.2. It was shown in [, Chapter 8] that
to obtain bounds for m(σ) it suffices to obtain bounds of the form

R ≪ T 1+εV −m(σ), (4)

where R is the number of points tr(1 ⩽ r ⩽ R) such that |tr| ⩽ T , |tr − ts| ⩾ (log T )4 for 1 ⩽ r ̸= s ⩽ R and
|ζ(σ + itr)| ⩾ V > 0 for any given V . Moreover, by [, (8.97)] we know that

R ≪ T ε
(
TV −2f(σ) + T

4−4σ
1+2σ V

−12
1+2σ + T

4(1−σ)(κ+λ)
((2−4λ)σ−1+2κ−2λ)V

−4(1+2κ+2λ)
((2−4λ)σ−1+2κ−2λ)

)
, (5)

where (κ, λ) is an exponent pair. We shall use (κ, λ) =
(

3
40 ,

31
40

)
in the rest of our paper for the sake of

convenience.
Now, for every 1

2 ⩽ σ ⩽ 277
300 we define c(σ) is the piecewise function given by Lemma 2.1. Clearly c(σ) is an

upper bound for µ(σ). By () and the definitions of f(σ) and c(σ), we can easily calculate the corresponding
m(σ) for some σ between 1

2 and 277
300 . Numerical calculation gives that

m(0.638889) > 9, m(0.663329) > 10, m(0.684349) > 11, m(0.701768) > 12,

m(0.717611) > 13, m(0.732262) > 14, m(0.745070) > 15, m(0.756380) > 16,

m(0.766588) > 17, m(0.775721) > 18, m(0.783939) > 19, m(0.791374) > 20

and Theorem 1.2 is now proved.
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