ON THE EXCEPTIONAL SET IN THE abc CONJECTURE

RUNBO LI

ABSTRACT. The abc conjecture states that there are only finitely many triples of coprime positive integers
(a,b,c) such that a + b = ¢ and rad(abc) < ¢! =€ for any € > 0. Using the optimized methods in a recent
work of Browning, Lichtman and Terdvéinen, we showed that the number of those triples with ¢ < X is
O (X56/85+5) for any € > 0, where % =2 0.658824. This constitutes an improvement of the previous bound

o) (XSS/SO).
CONTENTS
1. Introduction 1
2. Number of solutions to Diophantine equations 2
3. Upper bounds for v 3
4. Proof of Theorem 1.1 4
4.1. Case 1: so > k 6
4.2. Case 2: s9 <k 9
References 15

1. INTRODUCTION

Let n denotes a positive integer, p denotes a prime and write
rad(n) = Hp. (1)
pln

We say a triple (a, b, ¢) of coprime positive integers a, b, ¢ is an abc triple of exponent A if
a+b=c and rad(abc) < .

The famous abc conjecture, proposed by Masser and Oesterlé, asserts that there are only finitely many abc
triples of exponent A\ for any A < 1. Now the best result in this direction is due to Stewart and Yu, who
showed that there are finitely many abc triples satisfy

rad(abe) < (logc)® <. (2)
For more historical progress of the abc conjecture, we refer the readers to [1].

Now, we are focusing on the exceptional set in the abe conjecture. We first define Ny (X) as the number
of abe triples of exponent A in [1, X]3 as X — oo. A ”trivial” bound states that

Theorem 1.1. (”Trivial” bound). Let A > 0. Then we have
N)\(X) < x%)\+e
for any € > 0.

For the proof, one can see Lichtman’s recent note [2].

In 2024, Browning, Lichtman and Terdvéainen [1] developed a system of combinatorial bounds and im-
proved Theorem 1.1. Their result is the first power—saving improvement over the ”trivial” bound for \ close
to 1 (actually, for 0.99 < A < 1.001).
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Theorem 1.2. (Browning—Lichtman—Terdvdinen bound). Let 0 < A < 1.001. Then we have
NA(X) < o8 _ 066

In the present paper, we use the method of Browning, Lichtman and Terdvéinen [1] to improve their result

and show that without further optimization, the best exponent their current method can reach is %.

Theorem 1.3. For any € > 0, there exists a positive constant 6 = §(€) such that for 0 < A < 1+, we have
Ni(X) < 2t

In this paper, we put € > 0,0 < 6 < 1071% and § = % + ¢. We also suppose that € is a sufficiently small
positive number.

2. NUMBER OF SOLUTIONS TO DIOPHANTINE EQUATIONS

We define a counting function S, g, (X) for o, 8,7 > 0 as the same as in [1]: S, g,(X) denotes the
number of (a, b, c) € N3 with ged(a, b, c) = 1 such that
a,bce[1,X], a+b=c rad(a) <a® rad(d) <b’, rad(c) <.
Then we have

NAX) € max  Sagny(X). (3)
@,8,7>0
a+B+y<A

We shall use a standard dyadic decomposition to define a variant of Sa 5(X): Let S, 5 (X) denotes the

number of (a,b,c) € N® with ged(a, b, ¢) = 1 such that
X
c€ {2,)(] . a+b=c, rad(a) ~a® rad(d) ~b’, rad(c)~ .

Then, by the pigeonhole principle we have

Sa,p~4(X) < (log X)* Sk g (Y). 4
B(X) < (log X) max max Suy (Y) (4)
B'<B
7'y
Hence, in order to prove Theorem 1.3, we only need to show that
p(X) < XP(log X) . (5)

We need the following important lemma to reduce the problem into bounding the number of solutions to
some Diophantine equations.

Lemma 2.1. ([[1], Proposition 2.1]). Let o, 8, € (0,1] be fixed and let X > 2. For any € > 0 there exists
an integer d = d(e) > 1 such that the following holds: There exist X1,...,Xq,Y1,..., Y4, Z1,...,Z4 > 1
satisfying
xeeg ] x5 <x0t, X< [ vicxfe, xo< [ z<xot
1<j<d 1<j<d 1<j<d
J J 1—€? J
[T Xi<x JIvw<x x<]] 7<x
1<j<d 1<j<d 1<j<d
and pairwise coprime integers 1 < c1,c2,c3 < X€, such that
;ﬂﬁ(X) < X°By(c,X,Y,Z),

where

Bd(caana Z) = # {(X7Y7Z) € Ngd L XTq Xi7 Yi ~ }/iv Zp Zia

j i i
alle)+e]lv =]l

Jj<d Jj<d j<d

ged clﬂxj, CQHyj, 03sz =1

J<d Jj<d Jj<d
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forceZ? and X,Y,Z € R?,,.
>0

Now we give some upper bounds for the integer points By(c,X,Y,Z). These lemmas are proved in [1]
and they will be used to give combinatorial bounds for v in next section.

Lemma 2.2. (Fourier bound, [[1], Proposition 3.1]). Let d > 1, € >0 and A > 1 be fized. Let
Xla"'7XdaY15-~-aYd7Z17'~-aZd =1
Let ¢ = (c1,ca,¢3) € Z3 satisfy 0 < |c1], |cal, lea] < maxi<ica(X;YiZi)?. Then we have

1
Bi(e,X, Y, Z) < max (X:Y,Z,)° oJlisa BAH T + %))
Sisd max;—1 HjEO( mod %) ij
Lemma 2.3. (Geometry bound, [[1], Proposition 3.2]). Let d > 1 and € > 0 be fixed. Let
Xy X Yiso o Yo Zas o Ty > 1

Let ¢ = (cy, co,c3) € Z2 have non—zero and pairwise coprime coordinates. Then we have

[ligr Xi [igr Yi Tligrr 2
By(c,X,Y.,Z X,V Z;) xX; Ilv; 7 igl 7 ALl "8 2Ligl
d(c7 ) ) ) < ma‘X( min Cld] <H H H ) ( max

1<i<d LI C
i€l iel’ el
Lemma 2.4. (Determinant bound, [[1], Proposition 3.5]). Let d > 1 and let
Xpoo X Yes oo Ya Zaoo Za > 1.
Let ¢ = (¢1,c2,c3) € Zg’éo, Then we have

. -1 - 1/gy-1
Ba(e,X.Y.Z) < max (X.Y,2))° E(szi)prﬁgll ((Xqu) min (Xp/qu /p)).
Lemma 2.5. (Thue bound, [[1], Proposition 3.6]). Let d > 1 and let

Xusoo X Ve Y 2o Za > 1.

Let ¢ = (c1,ca,c3) € Zio. Then we have

. . . € . . . ] . . _1
Ba(e, X, Y, Z) <« max (X,Y;Z;) EI(XJ@ZZ) min g(xm)
7’\ j\

plJ
3. UPPER BOUNDS FOR V
In this section we shall use all things proved above to bound By(c,X,Y,Z) for any pairwise coprime

integers 1 < |e1],|eal, |es| < X<, any fixed d > 1 and any choice of X;,Y;, Z; > 1 for 1 < i < d that satisfies
conditions in Lemma 2.1. Moreover, we have

a+B+y<AL<1lI+0—e (6)

We define a;, b;, ¢; by writing
X;=X% Y,=X% Z =X (7)
for i < d and a; = b; = ¢; = 0 for i > d. We write s; = a; + b; + ¢;. By the conditions in Lemma 2.1, we can

assume that
Ziai, Zibi< , 1—¢2 chz\ ) (8)

i<d i<d i<d
By (6) and [[1], (1.2)], we can also assume that

D ai+bi), > (aitc), Y (bite)=0-—¢é (9)

i<d i<d i<d
and
Zsiél—&—é—e. (10)
i<d

3

(lea | TT; X7 le2| TT; Y les| TT; 25)

) |



We define

log By(c,X,Y,Z) 9
= 2¢. 11
Y log X +ae (11)
Then we only need to show that
v<0. (12)

Now we shall rewrite Lemmas 2.2-2.5 in terms of an upper bound for v using parameters a;, b;, ¢;.

Lemma 3.1. (Fourier bound). We have

I

146+ Z max(a;, b;) — Inr%gi((am, bm)

i<d

N =

Lemma 3.2. (Geometry bound). We have

v < 6+Iprr]1;/n ., (max (1,22@ +Zibi + Z ici> —Zai — Zbi — Z cz->
A1 cld] iel iel’ el iel iel’ el
or

v <4’ + min <Zai—|—2bi + Z ¢; + max (O,Ziai —i—Zibi—!— Z ic; — 1)) .
Lrcld) igl i igI i€l iel’ i€l

Lemma 3.3. (Determinant bound). We have

b
v < min (1+(5—ap—bq—|—min<ap,q)>.
p,q21 q p

Lemma 3.4. (Thue bound). We have

v< 1+57r1r)1>a§( Z(aiwLbi)
pli
We first show that we can assume that
1
29—1—6<Zai,2bi,Zci<1—9+(5—§e. (13)

i<d i<d i<d

I cqci>1-0+6— %€, then we have

> (ai+b) <0— %e. (14)

i<d

By [[1], (1.2)], Theorem 1.3 is proved. If >, ;¢; <20 —1—¢ and all of the three sums are < 1—0+6 — 1,
then we have

Z(bi—l—ci)g(20—1—5)+<1—9+5—e):H—le. (15)
i<d

Again, Theorem 1.3 is proved by [[1], (1.2)].

4. PROOF OF THEOREM 1.1

From now on, we ignore the presence of § and € in many places, since all the contributions of them can
be bounded by . We define the parameters d,, 9y, d¢, ab, Sacs Ope, 05 DY

5a:%*2ai, 5b:é*2bi, 5c:é*20u (16)

i<d i<d i<d
dab = 0a + 0py  Oac = +dc,  Obe = 0p +0cy 05 = g + 0p + Oc. (17)
By (9), (16) and (17) we know that
Sat e D < 5 — 6. (18)
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By (13) and (16) we have

2 4
0_§<6a76b;60<§_29- (19)
By (10) and (16) we know that
1-0, <146 (20)
and
205 = Ogp + Oge + Ope < 2 — 36. (21)
Then, by (20) and (21) we have
3
~§ <8 <130, (22)
Note that these inequalities
2 1
S i-1a; <S40 Y (i—2)a; < 5 +a1+20a, Y (i—3)a; <201 +az + 36, (23)
i>2 3 i3 3 i>4

follow by (8) and subtracting. Similar inequalities hold for b; and ¢;. By Lemma 3.4, we know that
< _ . .
v<1+46 1;1;;{2(% +b;)
pli
and similar results hold for a; + ¢; and b; + ¢;. Thus we can assume that
a; +bi,a; +ci,bi+c;, <1 —16 (24)
for every i > 2. Moreover, we can assume that
as +by+ag+by,a0+co+ag+cg,bo+co+byg+cq,<1—06. (25)
Now, (24) and (25) imply that

N W
N w
N W

So + 84, 83,85 < (1 — 9) = 0. (26)

By (16) and (23) we also know that
D osi=1-6s, > (i—1)si <2406, Y (i—2)si <L+s1+20,, Y (i—3)s; <281+ 52+ 30, (27)

i>1 i>2 i>3 i>4
If sy + s2 > 1 — 6, then by Lemma 3.2 and (26), we have
v < max(l,s1 +2s2) — 81 —sa+ 9

= max(l — s1 — 82, 82) + 0
3 3

since # > 0.6. Now we can assume that s; + so <1 — 6.
For any i > 3, let 7; be an element in {a;, b;, ¢;, a; + b;, a; + ¢;,b; + ¢;, s;}. By Lemma 3.2 we know that

v < max(l,s; +2s9 +i7;) —s1 —S2 — 7 + 0

= max(l —s; —$a — 75,82+ (i — 1)13) + 6 (29)
and
v < max(l,s1 +3m3) — 81 — 13+

= max(l — s; — 73,273) + 0. (30)

Combining (29) and (30), we know that v < 6 if
7'36(195152, ;0;52>U(10517 ;0) (31)

By (23) we know that

D ai < (i - 3)a; < 2a1 + az + 36, (32)

i>4 i>4
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and

> (i —3)a; —as %(2a1+a27a4+35) (33)

§a1\

25 124
By (16), these imply that

l\’)\»—t

1 1
a3:§—5a—a1—a2—2ai>§—3a1—2a2—45a (34)
i>4
and 1 1 3 1 5
agzg—éa—al—ag—a4—;ai>§—2a1—5a2—§a4—§5a. (35)

Note that (34) and (35) also hold for b3 and c3. Adding up these corresponding lower bounds, we have

S3 2 1— 351 — 282 - 459 (36)
and 5 ) 5
s3=>1—2s; — 252~ 554~ 555. (37)
Now, we split the argument according to whether sy > k or sy < k, where
49 23
kfﬁ—19~02951 (38)

Without loss of generality, we shall assume that asz > bs > c3 in all that follows.

4.1. Case 1: sg > k. By the assumption s; + s3 < 1 — 0 we know that

s1<1—0—s5<1—0—F (39)
By (26) we know that
3 3 3 3
<S-—Sh-s<S—S0-k
S4 B 29 S92 B 29 k (40)

4.1.1. Subcase 1.1: b3 <1 —60 — s1 — s3. Because c3 < b3, we have
b3+63<2b3<2(1797$1782)
22—29—281—252

< 2—20—2s5. (41)
Note that we have ) .
2— 20— 282 20 — 552 (42)
since s9 > % — 29. We also have
4 5 49 23
- ——0<k=———80. 43
3 3 12 4 (43)
Since s > k in this case, we have
1 1
bg + C3 < 59 — 582. (44)
If b3 + c5 is in the interval (31), we get v < 0. Otherwise we must have
b3+03 170781782 (45)

(We will repeat similar discussions for many times in the following.) Now, by (35), (45) and (39) we can
lower bound a3z by

3 1 5
a3:83—(b3+03)> (1—251—282—254 25)—(1—9—81—82)
5 1
29—§5a—81—§(82+84)

5 1/3 3
>0-25,—(1—-0-k)—=(2-2
0~ 50— (1—0-Fk) 2(2 e)
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11 ) 7

:107§5a71+k (46)
Now, (46) and (16) ensure that
11 ) 7
b < < Z _
49 25,1 4+k\a3\ da (47)
By (47) and (19), we know that
11 7T 1 3
il _ L _ <=
1 0+k 1 3S 26a
3[4
<-|--—26
11 25
kel _ <9
1 0+k 5 30
49 23
<2 _ 2 4
k 2 1 0 (48)

Now (48) contradicts our assumption since the contributions of ¢ are omitted.

4.1.2. Subcase 1.2: bg > 1 — 60 — s; — s2. By (31) and a similar discussion as in (44)—(45), we can assume

that
1 1

> —0 — —s9. 4
b3 29 282 ( 9)
By (23), we have
. . 1
D (i=2)bi =Y (i —2)b; —bs < < + by — by + 26p. (50)
. 5 3
>4 23
We also have
b1<51<1—9—82. (51)
Thus, by (50), (51) and (49) we have
> b < })fmi
=4 124
1/1
< 3 <3+b1 —b3+25b)
1/1 1 4
<= (=40-0-s)—(=6-= 2(=-2
2(3+( 0 — s2) (29 232>+ (3 9))
11 1
= 2 —_ v — -
PR
We want to show that
11 1 1
2— —0— 59 0 — =ss. (52)

Note that this is equivalent to

s9 < 1360 — 8. (53)
Now, by the assumption above we know that so < 1 — 6, and we have
1-60<130—-38 (54)

since 6 > 2 ~ 0.6428. Combining (52)—(54) we know that
D ai, Y obi< 9—-752 (55)
>4 24

and by (31) and a similar discussion as in (44)—(45) we can assume

ay, by, as, bs, ag, bg <1 —0— 51 — s2. (56)
7



Now, by Lemma 3.1 we have

1
V<3 1+5+ Zmax(ai, b;) — max(ag, bs)

i<d

Using (16), this implies that

w—-1-46< Zmax(ai,bi) < Z max(a;, b;) + Z(ai +b;)

i#2 i#£2, i<6 i>7

= Z max(a;, b;) + % — Oab — Z(ai +bi)

1#2, 1<6 <6
2 .
= g — 5ab — Z mm(az—,bi) - (112 + bg)
1#2, 1<6

We then give a lower bound for as + by. By (23), we have

4 a; <Y (i=3)a;= | Y _(i—3)a; | — as —2a5 — 3ag = (2a1 + az + 35,) — as — 2a5 — 3ag,

> > 124

whence
1

1 1 3
g—da:Zai—i—Zai <Zai+1(2a1 +a2+35a—a4—2a5—3a6) 272(7—2')%—}—1%.

4

i<6 i>7 i<6 i<6

Then we have

i#2, i<6
and A ) .
by > — — = T — )by — <6,
22 15 5,2( bi = 50

i£2, i<6

Since min(as, b3) = b3, we now have

2 . 8 1 . 7
2W—1-0< - —0g— Z min(a;, b;) — "5 Z (7—2)(ai+bi)—g6ab

3 i#£2, i<6 15 i#£2, i<6
2 2 1 .
< i + 56‘1” + R (6 max(ay,by) + min(a, by) + 4as — b

+3 max(a4, bs) + 2 max(as, bs) + max(as, b)) -
Using (24) and (49), we have
4a3—b3<4(1—0—b3)—b3

1 1 1 1

) 13
= 582"—4— ?0

Finally, by (63)—(64) we have

2 2 1
2w—1-6< B + 35‘“) + R (6 max(aq,by) + min(ay,b1) + 4as — b3

+3max(ay, bg) + 2max(as, bs) + max(ag, bg))

2 2 1 5 13
< +5ab+(631+(82+4—29)+6(1—9—81—82)>

15 5 ) 2

2 2

1 5 13
< +5ab+(681+82+4—29+6—69—681—652>

15 5 ) 2

8
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32 5 7 2

=15 20 12t 50w
32 5 7 (49 23 2 (2

<E 2o L (2 )+ (2 283,
15 2’ 10(12 49>+5(3 9)<0 83

1
v < 5(1 +0.283) < 0.65.

4.2. Case 2: sy < k. By (24) we have
2b3 <az+b3<1—80,

so that L1
by < = — 0.
35972
We want to show that
oLty d
9 27 92
Note that (69) holds if
S92 < 260 — 1.
Because we have 19 93
k=——-——0<20-1
2<F=1 77

when 6 > % ~ 0.6559, we deduce that

1 1
c3 < b3 < 59 — 582.
By (31) and a similar discussion as in (44)-(45), we can assume that
63<b3<179781782.

Then (36) gives that

(131837(b3+03)> (1738172827465)72(179781782)

=20 —1—s1 — 44;.
We first prove the bound (12) in two cases:

1 1
a3 =260 —1 and b3—|—03<§9—552.

4.2.1. Subcase 2.1: az > 260 — 1. In this case we have
b3, 03<1—9—a3<2—39.

Let

M= o).
ma max(b;, ¢;)

IfM>3-— %9, by Lemma 3.3 we know that

as

M 2
y:1+(5—a3—M—|—min<3,)§1—|—6—a3—3M§1—(20—1)—(2—39):9.

4
Thus we can assume that max(b;,¢;) <3 — 39 for ¢ > 4. Then we have
bi + ¢; < 2max(b;,¢;) <6 — 90
for i > 4. Moreover, by (8) and (16) we know that
4

D (= Dbi+e) < 5+ e

i<d
Using the second form of Lemma 3.2, we have

v<e+az+bs+ min(b4,04) + Z(bZ + Ci>

i>5
9



+ max (O, Zisi —3(a3z + b3) — 4min(by, cq) — Zz(bl +¢) — 1) .

Now, define
vy =az+ b3 + min(b4, 64) + Z(bl + Ci)
i>5
and
Vo = Zisi - 2(&3 + bg) — Smin(b4, 04) — Z(Z - 1)(bL + Ci) — 1.
i i>5
Then by (80) we have
v < max(vy,va) + €.
By (18), (23), (67) and (78), we know that

V1 = as —+ bg —+ min(b4,c4) =+ b5 —+ Cs —+ Z(bz —+ Ci)
126

1
< ag+bs+ min(b4,04) + b5 +c5 + g Z(’L — 1)(()2 + Ci)

i>6

by + 1/4

< ag+bs + 1 C4+b5+05+5(3+5bc(b2+02)2(b3+63)3(b4+04)4(b5+c5)>
by + 1/4

< ag+ b+ — C4+b5+65+5(3+5bc—3(b4+04)—4(b5+65)>
1/4 by +ca  bsH+cs

< =\ 5 c | —

a3+b3+5<3+5b> 0 + 5
1/4

<a3+53+5(3+5bc+(b5+65)>
1/4 2

<A-6)+-=-|-= - —40 — 96

( )+5(3+(3 >+(6 9))

1

:§—30<9—6

when 6 > 3 = 0.65.
Note that we have

K3

by (8). Then by (16), (19), (75), (78), (85) and assumptions, for v we have

vy = (Z i5; — 1) —2(a3 + b3) — 3min(by, cq) — Z(l — (b + ;)

i i>5

N

(Zz‘(bi +ei) =D (i—1)(bi+ ci)) — 2(as + bs) — 3min(by, c4)

i i>5

i i<4

(Z(bi +e)+ D> (i —1) b+ ci)) — 2(as + bs) — 3min(by, c4)

=) (bi + i) + (b2 + c2) — 2(a3 — c3) + 3max(by, cs)

7

2
< 3 dbe + S2 — 2a3 + 2¢3 + 3max(by, c4)

10

Z(bz + Ci) + (bg + 02) + 2(b3 + 03) + 3(b4 + C4) — 2(&3 + bg) — 3min(b4,C4)



2 2 49 23 9
<--2(9-= =) —220 1) +2(2 - _ 2
3 <9 3>+<12 49) (20 — 1)+ 2( 39)+3(3 29)
253 125
BETEET R (86)
when 6 > 233 ~ 0.6537. Now by (83), (84) and (86), we get the desired result.

4.2.2. Subcase 2.2: by+c3 < 10— s5. Now by (31) and a similar discussion as in (44)—(45), we can assume
that

by +c3 <1—6—351 — 3. (87)
By (26), (37) and (87) we know that
1 )
a3283—(bg+03) > <1—251—2$2—234—253) —(1—9—81—52)
5 1
:07555 5175(52+S4)
5 3 1/3 3
z0—--(1-3 sls—59)—
b 2< 29> 2(2 20> o
11 13
Note that 1 13
—0——>1-0 89
since 6 > % ~ 0.6538, we have
ag>1—0—s. (90)
By (31) and a similar discussion as in (44)—(45), we can assume that
1
Note that ]
56>20-1 (92)
since 6 < %, we have
as > 20— 1. (93)

Now by the discussions in Subcase 2.1, we get the desired result.
Now, we will prove Case 2 by showing that (12) holds for any (sq,s2) € [0,1]? (with the assumption
sg < k). We shall consider the following 4 subcases:

(2.3)
(2.4)
(2.5)
(2.6)

481+352>4756,

451 4 s9 < 370 — 24,
7 4

281 — 89 > 2 — 30.

(94)

23 ~0.6571. If 6 < 22

357

Note that every point in [0, 1]? is covered by one of the above 4 subcases when 6 >
there are two triangles that are not covered by any of the cases.

4.2.3. Subcase 2.3: 451 + 3s2 > 4 — 50. By (73) we know that

b3+63 < 2—29—281 —282. (95)
By the assumption we know that
5 1
—281 — 289 < 59 —2— 582 (96)
Now, by (95) and (96) we have
5 1 1 1
2—2 -0 —2— —s9=—0— —s5.
by +c3 < 0"1‘29 282 2(9 282 (97)
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Hence Subcase 2.2 completes the proof.

4.2.4. Subcase 2.4: 451 + s2 < 370 — 24. By (24) and (74) we know that

1—60—(20—1—s; —46,)
:2—39+S1+455

3
:2—39+81+4(1—29>
:6—99+81,
by +c3 < 12— 1860 + 2s;.

By the assumption we know that

37 1
251 < ?9 —12 — 532.

Now, by (99) and (100) we have
1 1 1

37
b3+03<12—189+281<12—189—&-?9—12—*82:*9—*52.

2 2 2

Hence Subcase 2.2 completes the proof.
4.2.5. Subcase 2.5: 6 — 90 < s < 26 — 3. By (22) and (74) we know that
3
a3 220 —1—51—46,>220—-1—3s1 —4 1—59 >80 —5—s;.
If 6 — 90 < so, we have
0,328975751 28975*814’(6*99*52):170751752.

By (31) and a similar discussion as in (44)—(45) we can assume

1.1
>0 s
as B 232

Now, (24) yields

b3, c3<1—-0—as

1 1
1-6-— <29_282)

3 1
—1-294-
2 +282a

N

b3 +c3 < 2—30+ 3.

7 1
<=0—2— —ss.
So 20 282
Now, by (106) and (107) we have
7 1 1 1
b3+63<2—39+82<2—39+§9—2—552:§0—582.

Hence Subcase 2.2 completes the proof.
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4.2.6. Subcase 2.6: 2s1 — s > 2 — 30. In this case the two intervals in (31) overlap, hence we have v < 6 if

1
T3 € <1—9—$1—82, 29) (109)

In Subcases 2.8 and 2.4 we prove the cases 4s1 + 3s9 > 4 — 50 and 4s1 + so < 376 — 24, so we can assume
that

4s1 + 3s2 <4 — 50 (110)
and
dsy + 55 > 370 — 24. (111)
By (110) we have
4 — 56 )
< —g—=1-70 (112)
and
82 < é(4—50—451). (113)

Now, (111) and (113) give that

1
S9 < 5(4— 59—481)

1
< 5(4 — 56 — (376 — 24 — s5))
1
= 5(28 426 + 5), (114)
so < 14 — 216. (115)
Note that
14 — 216 < ZG _4 (116)
3 3
when 6 > % =~ 0.6571, we have
7 4
<=0—-. 117
253773 (117)
If6 —90 < s < %0 — %, by Subcase 2.5 we have the desired result. Otherwise we have
Sso < 6 — 96. (118)

By the result proved in Subcase 2.1, we can also assume that ag < 20 — 1. Since 26 — 1 < %6‘ when 6 < %7
by (31) and a similar discussion as in (44)—(45), we have

az <1—0—5s1 — s9. (119)

We shall consider the following two cases.
Subcase 2.6.1: b + c3 <1 — 0 — s1 — s5. In this case we have, by the assumption and (119),

53 < 2—260 —2s1 — 2s5. (120)
Now, by (36) and (120) we have
1—3s; — 289 — 465 < 2 —20 — 251 — 259 (121)
and thus
2 —1— 45, < 5. (122)
By (112) and (122), we have
20—1+45<1—§0, (123)

which holds true only when 6 < % = 0.6154. This contradicts with our value of 6.
Subcase 2.6.2: b3 +c3 > 1 — 60 — s — so. By the assumption and (109), after a similar discussion as in
(44)—(45) we have

0. (124)

N | =

by + c3 =
13



Since b3 > c3, we have bz > iﬁ. Now as > bs yields

1
19<l)3<a,3<].—9—81—827 (125)
5
51 +82<1— EG (126)
By Lemma 3.1, we know that
1
v < 5 1+0+ Zmax(ai, bi) | - (127)
i#3
Note that
. 2
Z(max(ai, b;) + min(a;, b;)) = Z(ai +b)= 3 Oabs (128)
we have

2v—1-6< Zmax(ai,bi)

i#3
< max(a, b1) + max(ag, ba) + Z(max(ai, b;) + min(a;, b;))
i>4
2 .
= max(ar, by) + max(az,b2) + | 3 — dup = > (max(a;, b;) + min(a;, b;))
i<3
2 . . .
=3~ dgp — min(ay, by) — min(ag, b2) — min(ag, b3) — max(as, bs). (129)
By (34) we know that
1
301 + 20,2 + as > g — 45(1 (130)
and 1
8by+ 2by + by > 5 — 40y, (131)
Thus,
1
3min(ay,b1) > 3 2 max(az, ba) — max(as, bs) — 4max(dq, op). (132)
Now, by (19), (125) and (132) we have
2
2v—1—-6< 3 dap — min(ay, by) — min(ag, bz) — min(as, b3) — max(as, bs)
2 1/1
< 3 Oab — 3 <3 — 2max(az, by) — max(as, b3) — 4 max(d,, 5;,))
— min(ag, ba) — min(as, b3) — max(as, bs)
5 2 4 . 2
< 3 + 3 max(az, by) + 3 max(dq,0) — dap | — | min(as, b3) + 3 max(as, b3)
5 2 1 . 5 .
< g + 3 max(az, ba) + 3 max(dg, 0p) — min(dg, dp) — 3 min(as, b3)
5 2 1/4 2 5 (1
<24z o)+ (c2—20)—(6-2)-2(z9
g+ max(az 2)+3(3 > < 3> 3(4>
5 25 2
=3~ EH + 3 max(asg, ba), (133)
4 25 1 1
VS g- ﬂﬁ + 3 max(ag, ba) + 55. (134)
By (134), we know that (12) holds if we have
49
H’lE:LX((LQ7 bg) < ge — 4. (135)
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Now we assume that

4
max(ag, bg) > §99 —4. (136)
By similar arguments as above, we also have
49
max(az, c2) > §9 —4 (137)
and
49
max(bg, ca) = §9 —4, (138)

which mean that at least two of as, by, co are > %0 — 4, but then we have
4 4
6> 2 (899 _ 4> _ 199 _3, (139)

which is larger than 6 — 96 when 6 > % and thus contradicts with (118). That is why we stop at this point.
Finally, combining all above cases, Theorem 1.3 is proved.
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