
ON ALMOST PRIMES IN PIATETSKI–SHAPIRO SEQUENCES

RUNBO LI

Abstract. The author proves that for 0.9985 < γ < 1, there exist infinitely many primes p such that [p1/γ ]
has at most 5 prime factors counted with multiplicity. This gives an improvement upon the previous results

of Banks–Guo–Shparlinski and Xue–Li–Zhang.
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1. Introduction

Let Pr denotes an integer with at most r prime factors counted with multiplicity, p denotes a prime and
γ ∈ (0, 1). The Piatetski–Shapiro sequences are sequences of the form

Nγ =
{
[n1/γ ] : n ∈ N+

}
. (1)

In 1953, Piatetski–Shapiro [3] established that there are infinitely many primes in Nγ if γ ∈
(
11
12 , 1

)
. This

range of γ has been improved by many authors, and the best record now is due to Li , where he showed that
the same result holds for any γ ∈

(
775
919 , 1

)
.

In 1987, Balog [1] considered the following subsequence of Nγ :

Pγ =
{
[p1/γ ] : p prime

}
. (2)

He showed that for almost all γ ∈ (0, 1), we have

lim sup
x→∞

∑
q⩽x

q∈Pγ

q prime

1

xγγ−1(log x)−2
⩾ 1, (3)

but this result gives no information for any specific choice of γ.
In 2016, Banks, Guo and Shparlinski [2] generalized and enhanced Balog’s result. They showed explicitly

that for every γ ∈ (0, 1)\
{

1
z : z ∈ Z+

}
, there exist infinitely many q ∈ Pγ such that q = PR(γ) for some

finite R(γ). As a part of their result, they showed that there are infinitely many q ∈ Pγ with q = P8 for
any γ ∈ (0.9505, 1). In 2024, Xue, Li and Zhang [4] improved this to q = P7 for any γ ∈ (0.989, 1). In this
paper, we shall further improve this to q = P5 when γ is near 1.

Theorem 1.1. There are infinitely many q ∈ Pγ with q = P5 for any γ ∈ (0.9985, 1). Moreover, the
following estimates ∑

q⩽x
q∈Pγ

Ω(q)⩽5

1 ≫ xγ

(log x)2
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holds for all sufficiently large x provided that γ ∈ (0.9985, 1).

Throughout this paper, we always suppose that x is a sufficiently large integer, ε and η are sufficiently
small positive numbers and 0 < γ < 1. The letter p, with or without subscript, is reserved for prime numbers.
Let ξ = 140γ−99

270 − η, u = 1
ξ + ε and λ = 1

9−u−ε . We define the set A as

A = {a : a ⩽ x, a ∈ Pγ}

and we put

Ad = {a : ad ∈ A}, P (z) =
∏
p<z

p, S(A, z) =
∑
a∈A

(a,P (z))=1

1.

2. Two combinatorial lemmas

In this section we shall prove two combinatorial lemmas which will be used to handle some error terms
after performing Chen’s switching principle on some sieve functions.

Lemma 2.1. For any positive numbers t1, t2, t3, t4, t5, t6, t7 with

1

17.41
⩽ t1 < t2 < t3 < t4 < t5 < t6 < t7 and t1 + t2 + t3 + t4 + t5 + t6 + t7 = 1,

There exists some I ⊂ {1, 2, 3, 4, 5, 6, 7} such that

0.611797 ⩽
∑
i∈I

ti ⩽ 0.787393.

Proof. Consider the following cases:
1. 0.611797 ⩽ t4 + t5 + t6 + t7 ⩽ 0.787393. Take I = {4, 5, 6, 7}.
2. t4 + t5 + t6 + t7 > 0.787393. Now we have

t1 + t2 + t3 < 0.212607.

Since
3

17.41
⩽ 3t1 < t1 + t2 + t3,

we have

0.787393 < t4 + t5 + t6 + t7 < 1− 3

17.41
< 0.82769.

Now
1

17.41
< t4 <

1

4
(t4 + t5 + t6 + t7) = 0.2069225,

we have

0.5804705 = 0.787393− 0.2069225 < t5 + t6 + t7 < 0.82769− 1

17.41
< 0.770252.

If 0.611797 ⩽ t5 + t6 + t7 < 0.770252, take I = {5, 6, 7}. Otherwise we have

0.5804705 < t5 + t6 + t7 < 0.611797.

Since

0.05743 <
1

17.41
⩽ t1 <

1

7
(t1 + t2 + t3 + t4 + t5 + t6 + t7) =

1

7
< 0.143,

we have

0.6379005 = 0.05743 + 0.5804705 < t1 + t5 + t6 + t7 < 0.611797 + 0.143 = 0.754797.

Take I = {1, 5, 6, 7}.
3. t4 + t5 + t6 + t7 < 0.611797. Now we have

4

17.41
< t4 + t5 + t6 + t7 < 0.611797

and

0.388203 = 1− 0.611797 < t1 + t2 + t3.
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Hence

0.1294 <
0.388203

3
<

1

3
(t1 + t2 + t3) < t3 < t4 < t5.

Note that

t1 + t2 + t3 <
1

2
(t1 + t2 + t3 + t4 + t5 + t6) <

1

2
× 6

7
=

3

7
< 0.4286

and

t4 + t5 <
1

2
(t4 + t5 + t6 + t7) <

0.611797

2
< 0.3059,

we have

0.647 < 0.388203 + 2× 0.1294 < t1 + t2 + t3 + t4 + t5

and

t1 + t2 + t3 + t4 + t5 < 0.4286 + 0.3059 = 0.7345.

Take I = {1, 2, 3, 4, 5}.
Combining all above cases, Lemma 2.1 is proved. □

Lemma 2.2. For any positive numbers t1, t2, t3, t4, t5, t6 with

1

17.41
⩽ t1 < t2 < t3 < t4 < t5 < t6 and t1 + t2 + t3 + t4 + t5 + t6 = 1,

There exists some I ⊂ {1, 2, 3, 4, 5, 6} such that

0.611797 ⩽
∑
i∈I

ti ⩽ 0.787393.

Proof. Consider the following cases:
1. 0.611797 ⩽ t4 + t5 + t6 ⩽ 0.787393. Take I = {4, 5, 6}.
2. t4 + t5 + t6 > 0.787393. Now we have

3

17.41
< t1 + t2 + t3 < 1− 0.787393 = 0.212607

and

0.787393 < t4 + t5 + t6 < 1− 3

17.41
< 0.8277.

We also have

t5 + t6 < 1− 4

17.41
< 0.7703.

If 0.611797 ⩽ t5 + t6 < 0.7703, take I = {5, 6}. Otherwise we have

t5 + t6 < 0.611797.

Since

0.787393 < t4 + t5 + t6,

we have

0.175596 < t4 < t5.

Note that

t4 + t5 <
2

3
(t4 + t5 + t6) <

2

3
0.8277 = 0.5518,

we have

0.351192 = 2× 0.175596 < t4 + t5 < 0.5518.

Since

0.1723 <
3

17.41
< t1 + t2 + t3 < 0.212607,

we have

0.523492 = 0.1723 + 0.351192 < t1 + t2 + t3 + t4 + t5 < 0.212607 + 0.5518 = 0.764407.

If 0.611797 ⩽ t1 + t2 + t3 + t4 + t5 < 0.764407, take I = {1, 2, 3, 4, 5}. Otherwise we have

0.523492 < t1 + t2 + t3 + t4 + t5 < 0.611797,
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which means that
0.388203 = 1− 0.611797 < t6 < 1− 0.523492 = 0.476508.

If there exists i ∈ {1, 2, 3, 4, 5} such that 0.212667 ⩽ ti ⩽ 0.388203, then we can take I = {1, · · · , 6, except i}.
Now we consider the following 3 subcases:

2.1. At least two of t1, t2, t3, t4, t5 are larger than 0.388203. Now we have

1.16 < 3× 0.388203 < t1 + t2 + t3 + t4 + t5 + t6 = 1,

which is a contradiction.
2.2. One of t1, t2, t3, t4, t5 is larger than 0.388203. Now we must have

1

17.41
⩽ t1 < t2 < t3 < t4 < 0.212667 < 0.388203 < t5.

Hence
t1 + t2 + t3 + t4 < 1− (t5 + t6) < 1− 2× 0.388203 = 0.223594.

If 0.212667 ⩽ t1 + t2 + t3 + t4 < 0.223594, take I = {5, 6}. Otherwise we have

t1 + t2 + t3 + t4 < 0.212667.

But since

0.2297 <
4

17.41
< t1 + t2 + t3 + t4,

we get
0.2297 < t1 + t2 + t3 + t4 < 0.212667,

which is a contradiction.
2.3. None of t1, t2, t3, t4, t5 is larger than 0.388203. Now we must have

1

17.41
⩽ t1 < t2 < t3 < t4 < t5 < 0.212667

and
0.351192 < t4 + t5.

Hence
3

17.41
< t1 + t2 + t3 < 1− (t4 + t5 + t6) < 1− 0.351192− 0.388203 = 0.260605.

If 0.212667 ⩽ t1 + t2 + t3 < 0.260605, take I = {4, 5, 6}. Otherwise we have

3

17.41
< t1 + t2 + t3 < 0.212667.

Now we have
1

17.41
⩽ t1 <

1

3
(t1 + t2 + t3) < 0.0709.

Since
0.175596 < t4 < 0.212607,

we have

0.233 <
1

17.41
+ 0.175596 < t1 + t4 < 0.0709 + 0.212607 < 0.3.

Take I = {2, 3, 5, 6}.
3. t4 + t5 + t6 < 0.611797. Now we have

0.5 =
1

2
(t1 + t2 + t3 + t4 + t5 + t6) < t4 + t5 + t6 < 0.611797

and
1

17.41
⩽ t1 <

1

6
(t1 + t2 + t3 + t4 + t5 + t6) =

1

6
.

Hence

0.5574 <
1

17.41
+ 0.5 < t1 + t4 + t5 + t6 <

1

6
+ 0.611797 < 0.7784.

If 0.611797 ⩽ t1 + t4 + t5 + t6 < 0.7784, take I = {1, 4, 5, 6}. Otherwise we have

0.5574 < t1 + t4 + t5 + t6 < 0.611797.
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Since
2

17.41
⩽ t1 + t2 <

1

3
(t1 + t2 + t3 + t4 + t5 + t6) =

1

3
,

we have

0.6148 <
2

17.41
+ 0.5 < t1 + t2 + t4 + t5 + t6 <

1

3
+ 0.611797 < 0.94514.

If 0.6148 < t1 + t2 + t4 + t5 + t6 ⩽ 0.787393, take I = {1, 2, 4, 5, 6}. Otherwise we have

0.787393 < t1 + t2 + t4 + t5 + t6 < 0.94514.

Hence
1

17.41
< t3 < 1− 0.787393 = 0.212607.

Note that
t1 + t4 + t5 + t6 < 0.611797,

we have
0.175596 = 0.787393− 0.611797 < t2.

Hence
0.87798 = 5× 0.175596 < 5t2 < t2 + t3 + t4 + t5 + t6

and
1

17.41
⩽ t1 < 1− 0.87798 = 0.12202.

Since
0.175596 < t2 < t3 < 0.212607,

we have

0.22 <
1

17.41
+ 0.175596 < t1 + t3 < 0.12202 + 0.212607 < 0.34.

Take I = {2, 4, 5, 6}.
Combining all above cases, Lemma 2.2 is proved. □

3. Proof of Theorem 1.1

Now we follow the discussion in [4]. Consider the following weighted sum

W
(
A, x

1
17.41

)
=

∑
a∈A(

a,P
(
x

1
17.41

))
=1

1− λ
∑

x
1

17.41 ⩽p<x
1
u

p|a

(
1− u log p

log x

) =
∑
a∈A(

a,P
(
x

1
17.41

))
=1

Wa. (4)

We have

W
(
A, x

1
17.41

)
=

∑
a∈A(

a,P
(
x

1
17.41

))
=1

Ω(a)⩽5

Wa +
∑
a∈A(

a,P
(
x

1
17.41

))
=1

Ω(a)=6
µ(a)̸=0

Wa +
∑
a∈A(

a,P
(
x

1
17.41

))
=1

Ω(a)=7
µ(a)̸=0

Wa

+
∑
a∈A(

a,P
(
x

1
17.41

))
=1

Ω(a)=8
µ(a) ̸=0

Wa +
∑
a∈A(

a,P
(
x

1
17.41

))
=1

6⩽Ω(a)⩽8
µ(a)=0

Wa +
∑
a∈A(

a,P
(
x

1
17.41

))
=1

Ω(a)⩾9

Wa

= W1 +W2 +W3 +W4 +W5 +W6. (5)

Our aim is to show that W1 > 0.
Trivially, we have Wa < 0 for Ω(a) ⩾ 9. We also have W5 ≪ x1− 1

17.41+ε. Thus,

W1 = W
(
A, x

1
17.41

)
−W2 −W3 −W4 −W5 −W6

= W
(
A, x

1
17.41

)
−W2 −W3 −W4 −W6 +O

(
x1−10−10

)
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> W
(
A, x

1
17.41

)
−W2 −W3 −W4 +O

(
x1−10−10

)
. (6)

By the same arguments as in [4], we have

W
(
A, x

1
17.41

)
= S

(
A, x

1
17.41

)
− λ

∑
x

1
17.41 ⩽p<x

1
u

(
1− u log p

log x

)
S
(
Ap, x

1
17.41

)

⩾ (1 + o(1))
2C(ω)π (xγ)

17.412 log x

(
log(17.41ξ − 1)

ξ
− λ

∫ 17.41

u

t− u

t(tξ − 1)
dt

)
(7)

and

W4 =
∑
a∈A(

a,P
(
x

1
17.41

))
=1

Ω(a)=8
µ(a)̸=0

1− λ
∑

x
1

17.41 ⩽p<x
1
u

p|a

(
1− u log p

log x

)

⩽ λ
∑
a∈A(

a,P
(
x

1
17.41

))
=1

Ω(a)=8
µ(a) ̸=0

1

⩽ (1 + o(1))
2C(ω)π (xγ)

17.412 log x

(
λγ

ξ

∫ 1
8

1
17.41

∫ 1
7 (1−t1)

t1

∫ 1
6 (1−t1−t2)

t2

∫ 1
5 (1−t1−t2−t3)

t3

∫ 1
4 (1−t1−t2−t3−t4)

t4∫ 1
3 (1−t1−t2−t3−t4−t5)

t5

∫ 1
2 (1−t1−t2−t3−t4−t5−t6)

t6

1

t1t2t3t4t5t6t7(1− t1 − t2 − t3 − t4 − t5 − t6 − t7)
dt7dt6dt5dt4dt3dt2dt1

)
⩽ (1 + o(1))

2C(ω)π (xγ)

17.412 log x

(
λγ

ξ
0.00259

)
, (8)

where C(ω) is defined in [[4], (2.6)].
Note that we have

5− 5γ + 4ξ < 0.611797

and
1

4
(γ + ξ + 2) > 0.787393

when 0.9985 < γ < 1. Then by Chen’s switching principle, Iwaniec’s linear sieve, Lemmas 2.1–2.2 and
similar arguments as in [4], we can obtain

W3 =
∑
a∈A(

a,P
(
x

1
17.41

))
=1

Ω(a)=7
µ(a)̸=0

1− λ
∑

x
1

17.41 ⩽p<x
1
u

p|a

(
1− u log p

log x

)

⩽ λ
∑
a∈A(

a,P
(
x

1
17.41

))
=1

Ω(a)=7
µ(a)̸=0

1

⩽ (1 + o(1))
2C(ω)π (xγ)

17.412 log x

(
λγ

ξ

∫ 1
7

1
17.41

∫ 1
6 (1−t1)

t1

∫ 1
5 (1−t1−t2)

t2

∫ 1
4 (1−t1−t2−t3)

t3
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∫ 1
3 (1−t1−t2−t3−t4)

t4

∫ 1
2 (1−t1−t2−t3−t4−t5)

t5

1

t1t2t3t4t5t6(1− t1 − t2 − t3 − t4 − t5 − t6)
dt6dt5dt4dt3dt2dt1

)
⩽ (1 + o(1))

2C(ω)π (xγ)

17.412 log x

(
λγ

ξ
0.02571

)
(9)

and

W2 =
∑
a∈A(

a,P
(
x

1
17.41

))
=1

Ω(a)=6
µ(a) ̸=0

1− λ
∑

x
1

17.41 ⩽p<x
1
u

p|a

(
1− u log p

log x

)

⩽ λ
∑
a∈A(

a,P
(
x

1
17.41

))
=1

Ω(a)=6
µ(a)̸=0

1

⩽ (1 + o(1))
2C(ω)π (xγ)

17.412 log x

(
λγ

ξ

∫ 1
6

1
17.41

∫ 1
5 (1−t1)

t1

∫ 1
4 (1−t1−t2)

t2

∫ 1
3 (1−t1−t2−t3)

t3

∫ 1
2 (1−t1−t2−t3−t4)

t4

1

t1t2t3t4t5(1− t1 − t2 − t3 − t4 − t5)
dt5dt4dt3dt2dt1

)
⩽ (1 + o(1))

2C(ω)π (xγ)

17.412 log x

(
λγ

ξ
0.16688

)
. (10)

Finally, combining (6)–(10) we get that

W1 > W
(
A, x

1
17.41

)
−W2 −W3 −W4 +O

(
x1−10−10

)
⩾ (1 + o(1))

2C(ω)π (xγ)

17.412 log x

(
log(17.41ξ − 1)

ξ
− λ

∫ 17.41

u

t− u

t(tξ − 1)
dt

−λγ

ξ
(0.00259 + 0.02571 + 0.16688)

)
+O

(
x1−10−10

)
.

For 0.9985 < γ < 1, we know that

log(17.41ξ − 1)

ξ
− λ

∫ 17.41

u

t− u

t(tξ − 1)
dt− λγ

ξ
(0.00259 + 0.02571 + 0.16688) > 0.004 (11)

and the proof of Theorem 1.1 is completed.
We remark that the same method fails to prove [p1/γ ] = P4 because of the following two restrictions:
1. We cannot use the estimation of exponential sums [[4], Lemma 5.1] to handle the error term occurred

since we can not obtain a result of Lemma 2.2–type with 5 variables. An obvious counterexample is that
each one of p1, p2, p3, p4, p5 has size around x0.2.

2. Even if we can enlarge the corresponding Type–II range in so that a result of Lemma 2.2–type with 5
variables can be obtained, we cannot get a positive lower bound for∑

a∈A(
a,P

(
x

1
17.41

))
=1

Ω(a)⩽4

Wa

using Richert’s logarithmic sieve weight.
It seems that the limit of our method is to prove [p1/γ ] = P5.
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