
A REMARK ON LARGE EVEN INTEGERS OF THE FORM p+ P3

RUNBO LI

Abstract. Let N denotes a sufficiently large even integer, p denotes a prime and Pr denotes an integer
with at most r prime factors. In this paper, we study the solutions of the equation N − p = P3 and consider

two special cases where p is small, and p, P3 are within short intervals.
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1. Introduction

Let N denotes a sufficiently large even integer, p denotes a prime, and let Pr denotes an integer with at
most r prime factors counted with multiplicity. For each N ⩾ 4 and r ⩾ 2, we define

D1,r(N) := |{p : p ⩽ N,N − p = Pr}| . (1)

In 1966 Jingrun Chen [7] proved his remarkable Chen’s theorem: let N denotes a sufficiently large even
integer, then

D1,2(N) ⩾ 0.67
C(N)N

(logN)2
(2)

where

C(N) :=
∏
p|N
p>2

p− 1

p− 2

∏
p>2

(
1− 1

(p− 1)2

)
. (3)

and the detail was published in [8]. The original proof of Jingrun Chen was simplified by Pan, Ding and
Wang [15], Halberstam and Richert [12], Halberstam [11], Ross [17]. As Halberstam and Richert indicated
in [12], it would be interesting to know whether a more elaborate weighting procedure could be adapted to
the purpose of (2). This might lead to numerical improvements and could be important. Chen’s constant
0.67 was improved successively to

0.689, 0.7544, 0.81, 0.8285, 0.836, 0.867, 0.899

by Halberstam and Richert [12] [11], Chen [10] [9], Cai and Lu [6], Wu [22], Cai [2] and Wu [23] respectively.
Chen’s theorem with small primes was first studied by Cai [1]. For 0 < θ ⩽ 1, we define

Dθ
1,r(N) :=

∣∣{p : p ⩽ Nθ, N − p = Pr

}∣∣ . (4)

Then it is proved in [1] that for 0.95 ⩽ θ ⩽ 1, we have

Dθ
1,2(N) ≫ C(N)Nθ

(logN)2
. (5)

Cai’s range 0.95 ⩽ θ ⩽ 1 was extended successively to 0.945 ⩽ θ ⩽ 1 in [4] and to 0.941 ⩽ θ ⩽ 1 in [3].
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Chen’s theorem in short intervals was first studied by Ross [18]. For 0 < κ ⩽ 1, we define

D1,r(N,κ) := |{p : N/2−Nκ ⩽ p, Pr ⩽ N/2 +Nκ, N = p+ Pr}| . (6)

Then it is proved in [18] that for 0.98 ⩽ κ ⩽ 1, we have

D1,2(N,κ) ≫ C(N)Nκ

(logN)2
. (7)

The constant 0.98 was improved successively to

0.974, 0.973, 0.9729, 0.972, 0.971, 0.97

by Wu [20] [21], Salerno and Vitolo [19], Cai and Lu [5], Wu [22] and Cai [2] respectively.
In this paper, we aim to relax the number of prime factors of N − p, and at the same time extend the

range of θ. Our improvement partially relies on the cancellation of the use of Wu’s mean value theorem.
Our main result is the following theorem.

Theorem 1.1. for 0.838 ⩽ θ ⩽ 1 and 0.919 ⩽ κ ⩽ 1, we have

Dθ
1,3(N) ≫ C(N)Nθ

(logN)2
and D1,3(N,κ) ≫ C(N)Nκ

(logN)2
.

We also generalize our results to integers of the form ap+bP3. For two relatively prime square-free positive
integers a and b, let M denotes a sufficiently large integer that is relatively prime to both a and b, a, b < Mε

and let M be even if a and b are both odd. Let Rθ
a,b(M), Ra,b(M,κ), Rθ

a,b(M, c, d) and Ra,b(M, c, d, κ)

denote the number of primes similar to those of [14] but satisfy M−ap
b = P3 instead of P2. By using similar

arguments as in [14], we prove that

Theorem 1.2. For 0.838 ⩽ θ ⩽ 1, 0.919 ⩽ κ ⩽ 1 and c ⩽ (logN)C where C is a positive constant, we have

Rθ
a,b(M) ≫ Mθ

ab(logM)2
, Ra,b(M,κ) ≫ Mκ

ab(logM)2
,

Rθ
a,b(M, c, d) ≫

∏
p|c
p∤M
p>2

(
p− 1

p− 2

)
Mθ

φ(c)ab(logM)2

and

Ra,b(M, c, d, κ) ≫
∏
p|c
p∤M
p>2

(
p− 1

p− 2

)
Mκ

φ(c)ab(logM)2
.

Since the detail of the proof of Theorem 1.2 are similar to those of [14] and Theorem 1.1 so we omit it in
this paper.

2. Preliminary lemmas

Let A denote a finite set of positive integers, P denote an infinite set of primes and z ⩾ 2. Suppose that
|A| ∼ XA and for square-free d, put

P = {p : (p,N) = 1}, P(r) = {p : p ∈ P, (p, r) = 1},

P (z) =
∏
p∈P
p<z

p, Ad = {a : a ∈ A, a ≡ 0(modd)}, S(A;P, z) =
∑
a∈A

(a,P (z))=1

1.

Lemma 2.1. ([[13], Lemma 1]). If∑
z1⩽p<z2

ω(p)

p
= log

log z2
log z1

+O

(
1

log z1

)
, z2 > z1 ⩾ 2,
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where ω(d) is a multiplicative function, 0 ⩽ ω(p) < p,X > 1 is independent of d. Then

S(A;P, z) ⩾ XAW (z)

{
f

(
logD

log z

)
+O

(
1

log
1
3 D

)}
−
∑
n⩽D
n|P (z)

η(XA, n)

S(A;P, z) ⩽ XAW (z)

{
F

(
logD

log z

)
+O

(
1

log
1
3 D

)}
+
∑
n⩽D
n|P (z)

η(XA, n)

where

W (z) =
∏
p<z

(p,N)=1

(
1− ω(p)

p

)
, η(XA, n) =

∣∣∣∣|An| −
ω(n)

n
XA

∣∣∣∣ =
∣∣∣∣∣∣∣∣

∑
a∈A

a≡0( mod n)

1− ω(n)

n
XA

∣∣∣∣∣∣∣∣ ,
γ denotes the Euler’s constant, f(s) and F (s) are determined by the following differential-difference equation{

F (s) = 2eγ

s , f(s) = 0, 0 < s ⩽ 2,

(sF (s))′ = f(s− 1), (sf(s))′ = F (s− 1), s ⩾ 2.

Lemma 2.2. ([[2], Lemma 2], deduced from [12]).

F (s) =
2eγ

s
, 0 < s ⩽ 3;

F (s) =
2eγ

s

(
1 +

∫ s−1

2

log(t− 1)

t
dt

)
, 3 ⩽ s ⩽ 5;

F (s) =
2eγ

s

(
1 +

∫ s−1

2

log(t− 1)

t
dt+

∫ s−3

2

log(t− 1)

t
dt

∫ s−1

t+2

1

u
log

u− 1

t+ 1
du

)
, 5 ⩽ s ⩽ 7;

f(s) =
2eγ log(s− 1)

s
, 2 ⩽ s ⩽ 4;

f(s) =
2eγ

s

(
log(s− 1) +

∫ s−1

3

dt

t

∫ t−1

2

log(u− 1)

u
du

)
, 4 ⩽ s ⩽ 6;

f(s) =
2eγ

s

(
log(s− 1) +

∫ s−1

3

dt

t

∫ t−1

2

log(u− 1)

u
du

+

∫ s−4

2

log(t− 1)

t
dt

∫ s−2

t+2

1

u
log

u− 1

t+ 1
log

s

u+ 2
du

)
, 6 ⩽ s ⩽ 8.

Lemma 2.3. ([[16], Theorem]). For any given constant A > 0, there exists a constant B = B(A) > 0 such
that ∑

d⩽xt−1/2(log x)−B

max
x/2⩽y⩽x

max
(l,d)=1

max
h⩽xt

∣∣∣∣π(y + h; d, l)− π(y; d, l)− h

φ(d)

∣∣∣∣≪ xt

logA x
,

where
3

5
< t ⩽ 1.

Lemma 2.4. If we define the function ω as ω(p) = 0 for primes p | N and ω(p) = p
p−1 for other primes

and N
1
α−ε < z ⩽ N

1
α , then we have

W (z) =
2αe−γC(N)(1 + o(1))

logN
.

Proof. By similar arguments as in [1], we have

W (z) =
∏
p|N

p

p− 1

∏
(p,N)=1

(
1− ω(p)

p

)(
1− 1

p

)−1
αe−γ(1 + o(1))

logN
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=
2αe−γC(N)(1 + o(1))

logN
.

□

3. Proof of Theorem 1.1

Let θ = 0.838 and κ = 0.919 in this section. Put

A = {N − p : p ⩽ Nθ} and B = {N − p : N/2−Nκ ⩽ p ⩽ N/2 +Nκ}.

Clearly we have

Dθ
1,3(N) ⩾ S

(
A;P, N

1
11.99

)
− 1

2

∑
N

1
11.99 ⩽p<N

1
3

(p,N)=1

S
(
Ap;P, N

1
11.99

)
= S1 −

1

2
S2, (8)

D1,3(N,κ) ⩾ S
(
B;P, N

1
11.99

)
− 1

2

∑
N

1
11.99 ⩽p<N

1
3

(p,N)=1

S
(
Bp;P, N

1
11.99

)
= S′

1 −
1

2
S′
2. (9)

Now we define the function ω as ω(p) = 0 for primes p | N and ω(p) = p
p−1 for other primes. We can take

XA ∼ Nθ

θ logN
and XB ∼ 2Nκ

logN
.

By Lemmas 2.1–2.4, Bombieri’s theorem and some routine arguments, we have

S1 ⩾ (1 + o(1))
8∆1C(N)Nθ

θ2(logN)2
, S2 ⩽ (1 + o(1))

8∆2C(N)Nθ

θ2(logN)2
, (10)

S′
1 ⩾ (1 + o(1))

16∆3C(N)Nκ

(2κ− 1)(logN)2
, S′

2 ⩽ (1 + o(1))
16∆4C(N)Nκ

(2κ− 1)(logN)2
, (11)

where

∆1 = log(5.995θ − 1) +

∫ 5.995θ−2

2

log(s− 1)

s
log

5.995θ − 1

s+ 1
ds, (12)

∆2 = log

(
11.99θ − 2

3θ − 2

)
+

∫ 5.995θ−2

2

log(s− 1)

s
log

(5.995θ − 1)(5.995θ − 1− s)

s+ 1
ds, (13)

∆3 = log(11.99κ− 6.995) +

∫ 11.99κ−7.995

2

log(s− 1)

s
log

11.99κ− 6.995

s+ 1
ds, (14)

∆4 = log

(
23.98κ− 13.99

6κ− 5

)
+

∫ 11.99κ−7.995

2

log(s− 1)

s
log

(11.99κ− 6.995)(11.99κ− 6.995− s)

s+ 1
ds. (15)

By numerical calculations we get that

∆1 −
1

2
∆2 ⩾ 0.0009 and ∆3 −

1

2
∆4 ⩾ 0.0009. (16)

Then by (8)–(16) we have

Dθ
1,3(N) ≫ C(N)Nθ

(logN)2
and D1,3(N,κ) ≫ C(N)Nκ

(logN)2
.

Theorem 1.1 is proved.
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