A NOTE ON VARIANTS OF BUCHSTAB’S IDENTITY

RUNBO LI

ABSTRACT. The author proves variants of Buchstab’s identity on sieve functions, refining the previous work
on new iteration rules of Brady. The main tool used in the proof is a special form of combinatorial identities
related to the binomial coefficients. As a by—product, the author obtains better inequalities of Fi(s) and
fr(s) for dimensions k > 1.
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1. INTRODUCTION

Let A be a set of numbers, Ag = {a: ad € A} and S(A,2) =5,  4ea 1. Suppose that «, z,y are
(a,]],<.P)=1
such that for every squarefree integer d, all of whose prime factors are less than z, we have

14| = m @] <1, (1)

Suppose that y = 2° and define F,;(s) and f.(s) by

“*“UM@MIIQ;)<ﬂAa<u+mmﬂﬁmI1@;) -

p<z p<z

with f.(s) as large as possible and F,(s) as small as possible, given that (2) holds for all choices of A
satisfying (1). Selberg [3] has shown that F,(s) and fy(s) are continuous, monotone, and computable for
s > 1, and that they tend to 1 exponentially as s goes to infinity.

When & < 1, the optimal estimates for Fj;(s) and f.(s) arise from Buchstab’s identity

S(A z) =5 (A w)— Z S(AZNP) (3)

for w < z. Simply let w = 2, this becomes

S(A,2) = A=) S (App). (4)
p<z
This leads to the inequalities
s"F.(s) < 8" — KZ/ t" L (fo(t — 1) — 1) dt, (5)
t>s
s*fe(s) = s — /{/ " (Fo(t — 1) — 1) dt. (6)
t>s

Infinite iteration of these inequalities leads to the S-sieve.
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However, there are better estimates for F,;(s) and f,(s) when £ > 1. Taking Selberg’s upper bound sieve
as a starting point and using similar iteration rules, Diamond, Halberstam and Richert [2] developed their
DHR-sieve.

In 2017, Brady mentioned and proved lots of new sieve iteration rules in his PhD thesis. One of his
simplest upper bound sieve is

2 1
S(A,z)gS(A,w)—g > S(Apl,w)Jrg > S (Appw).
wp1<z wLp2<p1<2z

He proved this inequality using a combinatorial identity

33 () =09 (-3) o

Clearly, this leads to an inequality of F;(s):

/i Mdm L1 / /z A Iz))dxgdxl. (8)

% I 3 )1 1 1T

t t

2
s"F.(s) < tVF.(t) — 3

In this note, we further develop his method and prove a series of generalized iteration rules.

2. UPPER BOUND ITERATION
We first prove a simple upper bound iteration, which is a direct generalization of [[1], Theorem 34].

Theorem 2.1. For any odd positive integer k and w < z, we have
kE—1 k—2

S(A,z)éS(A,w)fT Z S(Ap17w)+T Z S(Aplpww)
wLp1<z wLp2<p1<z

k—3

Tk Z S(‘Aplmp'avw)Jr"'
wLp3<p2<p1<z

2

-2 Z S (Aplm...pkfz,w)
WPr—2<--<p2<p1<z

1

+ E Z S (APIPQ”'Pk:—l’w) .

WPk —1 < <p2<p1<z

Proof. We follow the essential steps in the proof of [[1], Theorem 34]. Let a € A. If a has any prime factor
below w, then both quantities are clearly zero. Assume that a has no prime factors below w and has exactly
n prime factors between w and z. If n = 0 then both sides count a once. Thus we only need to show that
for any integer n > 1 we have

0 k—1 +k—2(n> l<:—3<n)+ +l n ()
T TR 2 ko \3 k\k—1)
Note that we have the following identity

e () - () () =09 (-5 0-F)

and the right hand side of (), which has even number of terms, is clearly > 0, Theorem 2.1 is proved. Note
that [[1], Theorem 34] is just Theorem 2.1 with k = 3. O

N
[t
|

Corollary 2.2. For any odd positive integer k and real 2 < s < t, we have

k—1 [ t5f(t(1 — k=2 [% [“ ¢5F,(t(1 -z —
s"‘F,{(s)gt"‘F,{(t)— ; /1 f ( (xl 1’1))dx1+ ; /1 /1 ((x1$12'1 m2))d.’£2d(£1

k=3 [* / "2 % fo(H(1 = @1 — 33 — 73))
k 1 1 T1ToX3
2

t

dlligdlligdml =+

=



2 (7 (@ Chs 4R f (41— — Ty — o — Tp2))
_2 dzy_o - daod
k‘/; /} /1 T1%g - Th—2 Th=2 £20

t

1
1 5 1 mk"_QtHFntlf — —_ e — _

+,/ / / (t( f1~ 2 Lk 1))dxk_1~'~dx2dx1.
k % % 1 L1X9 " T—1

t

However, we can use more flexible parameters to get more variants of this iteration. Before stating the
next result, we first define

U={(x1,22) : 1,22 € (0,1] U [2,3]U--- U [k — 1, k] with all odd k, |x1 — 22| < 1}. (11)

Theorem 2.3. For any my, mo such that (ml,mz) eU and w < z, we have

2
iy Z S (Apipyw) -

w<p1 <z wp2<p1<2

S(A2) <8 (Aw)— TS g, )+

mimso

Proof. Again, we use the essentially same arguments as the proof of Theorem 2.1. Let a € A. If a has any
prime factor below w, then both quantities are clearly zero. Assume that a has no prime factors below w
and has exactly n prime factors between w and z. If n = 0 then both sides count a once. Thus we only need
to show that for any integer n > 1 we have

-1 2
0g1-Mtme T, (") (12)
mi1mso mimso 2
By the following identity
-1 2
;- Mt me it (n):<1_n> (1_n) (13)
mimso mimsg \2 my mao

and (x1,z2) € U, which means that , we know that the right—hand side of (4) is clearly > 0, Theorem 2.3 is
proved. Note that [[1], Theorem 34] is just Theorem 2.3 with m; = 2 and my = 3. O

Corollary 2.4. For any mi, mg such that (m1,me) € U and real 2 < s < t, we have

S"F(s) < t5Fu(t) — mi +mo — 1 [2 o (t(1 _xl))dxl

mims T

R F(
/ / ))dmgdajl.
mlmg X1T9

Using the same method but with more parameters, we can get lots of upper bound iterations of this type.
For the sake of simplicity, we write

A
Mk = E Mgy Mgy == =My,

1<i1 <2< <<k

Theorem 2.5. For any mq, ma, ms, my such that (my,ma) €U, (ms,my) €U and w < z, we have

3 a2 1 2(M2 —3M}+7
S < Sy~ MEZMEEMI 1§ g 0y ZORSMIET) gy

mi1momsm mimomsm
1HE2TTE3 T wLp1<z 1HE2TTR3 7154 wpa<p1<z
6 (M} -6 24
4
- ( ) E : S (A;D1P2p37w) + E S (A;D1P2P3P47w) .
mi1mommsimy mi1MmoMmsimy
wEps<p2<p1<z wEps<p3<p2<p1<z

Corollary 2.6. For any my, ma,ms,my such that (my,ma) €U, (Mg, mq) € U and real 2 < s < t, we have

M3 — M2+ M —1 5 t5f(t(1 —
$"F(s) < t"F(t) — 4771177142;3m§L [ f((xl ml))dxl

t

2 (M2 —3M} +7) / /m tFF (t(1 — 21 — 33))
1

M1 MoM3My 1 T1T2

dIQdZEl



(M} —6) w2 gnf (1 — 2y —
— 4 / / / f T T2 xs))diﬂgdxgdxl
m1ma21mszing T1T2X3

T3 tl{F 1 _ — .
+ - / / / / L1 T2 3= ))d$4d$3dl‘2d1}1.
mM1M2M3MNy T1X2X3T4

Theorem 2.7. For any mq,ma, ms3, mg, ms, mg such that (my,ms) € U, (mz,myq) €U, (M5, mg) €U and
w < z, we have

MJ — ME + M3 — M2 + M} —1
S(A2) < S (Aw)— oot 6 = B £ W S S0
RIS wsp1<z
2 (Mg — 3M§ + 7TME — 15M¢ + 31) S S
mi1momszmmaqimsme o< P1P2)
6 (M§ — 6Mg + 25M§ — 90) S s "
m1mams3maqmsme W< prmmip s P1P2P3>
24 (Mg — 10M; + 65)
+ Z S <AP1P2P3;D47 w)
mimpmymamsme e
120 (M61 — 15) Z
S (Aplpzpspwmw)
mimymymamsme | - L=
720
m1momMmamqmsmeg Z S (‘A;Dlmpsmpapeaw) :

WL Ppe<ps <pa<p3<p2<p1<z

Corollary 2.8. For any my,ma, m3, mg, ms, mg such that (my, ma) € U, (Mg, mq) € U, (M5, mg) €U and
real 2 < s < t, we have

s"Fe(s) < t"Fe(t) —

ME — M+ M3 — M2+ ML —1 /i La(t(1 = 20)) o
1
1

mi1maomsmaqimsmeg L T

d$2d$1

1o

mimamsmaqmsie

6M376M2+25M1790 er“t’“ t(l—a —
_ ( 6 6 6 / / / fult T1— T2 — ))d$3d$2d1'1
M1 M2M3M4M5Meg 1 T1T2T3
24 (M2 — 10M} + 65 T2 (T YRE (1 — 2y — 2o — T3 —
+ (Mg 6 ) / / / / (tA =21 — a2 — 73 x4))dx4dx3dx2dm1
m1MoMm3m4MmsMeg 1 JL 1 1 T1T2X3L4
120 (Mg — 15)
m1m2m3m4m5m6
T4 tHF 1 — — — — — T3
/ / / / / 1 T2 3 T4 i ))dl‘5d$4dl‘3d$2dl‘1
% T1T2X3T4T5
X
m1m2m3m4m5m6

' : ’ ' Tt~ 21— 22 — 2 — T4 = 75 — T)) dredrsdrsdxsdradr
vy e b TITRTITAT5 T

3. LOWER BOUND ITERATION

In this section we shall use a similar method to prove corresponding lower bound iterations.
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Theorem 3.1. For any 0 < mg < 1 and my, ma such that (my,mg) €U and w < z, we have

— — — 1
S(‘A’Z)>S(A’w)_m0m1+mom2+:;$nnglm2m0 m1p —mg + Z S (A, w)

wp1<z
2 (mo +mq + mg — 3)
+ Z S (Apipss w)
Momame wEp2<p1<2
6
IS Z S (Aplp21037 U}) :

moMmi1Mmso
0 wLp3<p2<p1<z

Proof. By the same arguments as in the proof of Theorem , we only need to show that for any integer n > 1
we have

0>1_m0m1+m0m2+m1m2—m0—m1—m2+1n+2(m0+m1+m2—3) (n)_ 6 (n) (14)
momimeso momimeso 2 momimeso 3
Here, we have the identity
1_m0m1+m0m2+m1m2—m0—ml—m2+1n+2(m0+m1+m2—3) (n)_ 6 (n)
momimeso momimso 2 momimeso 3

(-2)(-2) (- 2)

One can easily check that for 0 < mg < 1 and mq,ms such that (mq, ms) € U, the right-hand side is zero
or negative for any positive integer n. Hence Theorem 3.1 is proved. |

Corollary 3.2. For any 0 < mg < 1 and my,ms such that (mi,m2) € U and 3 < s < t, we have

dl‘1

5" fi(s) = t" fie(t)

_ momy + momg + myme —mo —my —ma + 1 /l t"F(t(1 — x1))
1

momims I

t

+ drodry

2(mo +my +mgo — 3) /‘i /m1 " fi(t(1 — 71 — x2))

momimeso T1X2

t

_ 6/1/@/1-2 tnF"‘(t(l_xl_@_xs))dx dxodx
momimse 1 J1 1 T1X2T3 M

Again, for the sake of simplicity, we write

[ A—
Nk = E My, My -+ - My,

0<i1 << <ip<Lk—1

Theorem 3.3. For any 0 < mg < 1, my, ma, m3, my such that (my,ms) €U, (m3,my) EU and w < z, we

have
Ni— N34+ N2 - N!+1
S(A2) > §(Aw) -~ LB STl S g4, )
momi1MmamMmszmny w<p1<z
2 (N2 — 3N2 + 7N} — 15
N ( 5 5 5 ) Z S (Ap1p27 ’U})
mom1mamsamy wLp2<p1<z

6 (N2 — 6NZ 4 25) 3

S (Aplpzpa ’ w)

momm1Mmo1mam
0T T2 wLp3<p2<p1<2
1 —
24 (N -10) oin
+ ( P1P2P3p4’w)
momm1memsmny
wEps<p3<p2<p1<z
120 Z
o T TTA S(A w).
MoM1M21M3My ( P1P2P3P4P5 ) )

wEps <pa<p3<p2<p1<z
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Corollary 3.4. For any 0 < mg < 1, my, ma, m3, my such that (my,ms2) €U, (mz, my) €U and 3 < s < t,
we have
NY— N3+ N2—N:4+1 [+ t°F,(t(1 —
S huls) > veg() - eI =T 2L [T BRI D)),
mopmmi1mommsimay % X1
2 (N3 —3N2 4+ 7N —15) [+ [ t5f (1 — a1 —
L2 5+ NS )// fultQ=ar=22)
MM 1MaM3My T1T2
6 N2—6N1+25 2R FL (1 — —
_ ( 5 5 / / / 1 T2 ))dmgdﬂigdﬂfl
Mo 1m2imnsing T1T2X3
24 (N2 — 10) 28 gnf (11 — 21 — @9 — 5 —
5 / / / / f 1 2 3 x4))dl‘4d$3d$2d$1
momi1momsimay % % 1234
120
- X
m0m1m2m3m4
T4 tﬁF 1 _ _ —_ _
/ / / / / il B e e ))dm5dx4dx3dx2dx1.
L1X2T3X4Tr

4. FURTHER PROSPECT

In this note, we only give some sieve inequalities and do not mention any possible application of these
inequalities. In fact, these may be helpful in bounding the ”sifting limits” 5, for x > 1. The bounds for S,
are quite important in many high—dimensional sieve problems. We hope someone can accomplish this work.

There are many other iteration rules proved in Brady’s thesis [1]. We state two of them in the rest of this
note, and we hope someone can generalize them.

Theorem 4.1. ([[1], Theorem 35]). For any w < z?, we have
1 5)
S(Az2) =S (A,wf) - Y s (Apl, w) 2 Y s (Apl,,g, “’)
1 P1 w P1
w2 <p1<z 71 SKp2<p1<z
2 w 1 w
) Z S (Aplmpw p1> - 5 Z S (AP1P2P37 ]31) :

pr SPa<p2<p1<z
p2p3<w

pg SP3<p2<p1<z

Theorem 4.2. ([[1], Theorem 42]). If every element of A has size at most y% and 25 <

y 4 y 2 8
S(A,Z)gs(/l,z*2>*g Z S(Ap1,27> g Z S(Aplazg)iig)
z%<p1<%3 §<P1<Zj /7
3 Y 7 Y
t5 2 S(Awmg)r X 5(Awed)
z%<m<p1<§ %<P2<§<P1<Zfi
1 Yy 1 Yy
T3 Z S (-Aplpza Zﬁ) T3 Z S (Ap1p27 ;)
B<p< <Lp<m<e T <p<m<iy
4 Y 1 Y
5 2 SAwmg)rs X ()
2 <pa< L <pr<a L <pa<pi<z
2 Y
- 5 Z S (Aplpzp;w ;)
%<p3<p2<171<*
P1P2P3<Z
4 3log(paps) Y
4 L o)y g (4
15 2 , ( 8log(y/p1) PipEpe 42

3
2 <ps<p2<i <p1<ip
6

5
<y < zz2, we have

5 (4 3)

1<z

12
5
<p



t5 X S( )

Z'LQ§P4<p3<P2<P1<§
p1pap3 <z’
n 1 Z 1_ log(p2pspa) g (A g)
10 ) log(y/p1) b 2 )

L <pa<pz<p2< % <<y
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